DESIGN OF DECK SLAB AND GIRDERS- BRIDGE ENGINEERING

892 views 25 slides Mar 31, 2024
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

BRIDGE ENGINEERING -KTU


Slide Content

Design of Deck Slab & Girders

DesignExample:
Design a RCC T beam girder bridge to suit the following data
Clear width of roadway –7.5 m
Span (c/c of bearings) –16 m
Live load –IRC class AA tracked vehicle
Average thickness of wearing coat –80 mm
Concrete mix –M25
Steel –Fe415 grade HYSD bars
UsingCourbon’smethod,computethedesignmomentsand
shearforcesanddesignthedeckslab,maingirderandcross
girderandsketchthetypicaldetailsofreinforcements.
2

Design of Deck Slab
3

1.Permissiblestresses:
Permissible flexural compressive stress (σ
cb) = 8.3 Mpa(table 9 of IRC
21-2000)
Permissible stress for Fe415 (σ
st) = 200 Mpa(table 10 of IRC 21-2000)
The modular ratio can be adopted as m = 10
Lever arm factor (j) =
Moment factor (Q) = 0.5σ
cbnj= 0.5x8.3x0.9x0.293 = 1.09
4






3
n
1 9.0
3
293.0
1j
293.0
3.8x10
200
1
1
m
1
1
n
cb
st





































2.Crosssectionofthedeck:
5
2.5 m
2.5 m
4.0 m 4.0 m 4.0 m 4.0 m
The depth of cross girder is taken as equal to the depth of main
girder to simplify the computations

2.Crosssectionofthedeck:
6
0.08 m thick wearing coat
0.2 m
0.6 m
1.85 m 2.5 m 2.5 m
7.5 m
0.3 m
1.0 m
1.4 m
0.3 m

3.Designofinteriorslabpanel:
Bendingmoments
Deadweightofslab=(1x1x0.2x24)=4.8kN/m
2
Deadweightofwc=(1x1x0.08x22)=1.76kN/m
2
Totaldeadload=4.8+1.76=6.56kN/m
2
7
B=2.5 m
L=4.0 m
3.60 m
0.85 m
u
=1.01 m
v=3.76 m

3.Designofinteriorslabpanel:
Bendingmoments(liveload)
u/B=1.01/2.5=0.404
v/L=3.76/4.0=0.94
K=(B/L)=2.5/4.0=0.625
FromPigeaud’scurvesm
1=0.085andm
2=0.024
8
Pigeaud'scurvesarebasedontheelasticanalysisofthinisotrpoicplates
withsimplesupportsonallthefoursides.However,adeckslabcannotbe
idealisedassimplysupportedpanel.TheprocessofreducingPigeaud‘s
momentvaluesby20%andassumingequalandsupportmomentsis
highlyconservative.Thedeckslabbehavesasafixedslabfortheusual
beamsizesofabridge.

3.Designofinteriorslabpanel:
Bendingmoments(liveload)
Bendingmomentintheshortspandirection(M
S)
M
S=(m
1+μm
2)W=(0.085+0.15x0.024)350=31.01kNm
Bendingmomentinthelongspandirection(M
L)
M
L=(m
2+μm
1)W=(0.024+0.15x0.085)350=12.845kNm
Thedesignbendingmomentoveranintermediatesupportofa
continuousdecksupportedonbearingsmaybecalculatedby
equation.
M
1= (M –qa
2
/8) or 0.8M, whichever is greater,
where, M, = Design bending moment.
9

3.Designofinteriorslabpanel:
Bendingmoments(liveload)
Designbendingmomentincludingimpactintheshortspan
direction(M
S)=1.25x0.8x31.01=31.01kNm
Designbendingmomentincludingimpactinthelongerspan
direction(M
L)=1.25x0.8x12.845=12.845kNm
Bendingmoments(deadloads)
Deadload=6.56kN/m
2
Totalloadonpanel=(4x2.5x6.56)=65.6kN
u/B=1.0;v/L=1.0asthepanelisloadedwithuniformly
distributedload.
K=(B/L)=2.5/4.0=0.625and1/K=1.6
FromPigeaud’scurvesm
1=0.049andm
2=0.015
Bendingmomentintheshortspandirection(M
S)
M
S=(m
1+μm
2)W=(0.049+0.15x0.015)65.6=3.36kNm
Bendingmomentinthelongspandirection(M
L)
M
L=(m
2+μm
1)W=(0.015+0.15x0.049)65.6=1.468kNm
10

3.Designofinteriorslabpanel:
Bendingmoments(deadload)
Designbendingmomentintheshortspandirection
(M
S)=0.8x3.36=2.688kNm
Designbendingmomentinthelongerspandirection
(M
L)=0.8x1.468=1.174kNm
Totaldesignbendingmomentsintheshortspan
(M
S)=31.01+2.688=33.698kNm
Totaldesignbendingmomentsinthelongspan
(M
L)=12.845+1.174=14.019kNm
11

3.Designofinteriorslabpanel:
Shearforces
Dispersioninthedirectionofspan=0.85+2(0.08+0.2)=1.41m
Formax.shear,loadiskeptsuchthatthewholedispersionisin
span.Theloadiskeptat1.41/2=0.705mfromtheedgeof
beam.
12

3.Designofinteriorslabpanel:
Shearforces
Breadthofgirder=0.3m
Clearlengthofpanel(L’)=4.0-2(0.15)=3.70m
Clearbreadthofpanel(B’)=2.5-2(0.15)=2.2m
(B’/L’)=2.2/3.7=0.6
‘K’forcontinuousslabis1.84(IRC21-2000)
Effectivewidthofslab=1.84x0.705(1-0.705/2.2)+3.76=4.64m
Loadpermeterwidth=350/4.64=75.4kN
Shearforce=75.4(2.2-0.705)/2.2=51.23kN
Shearforcewithimpact=1.25x51.23=64kN
Deadloadshearforce=6.56x2.2/2=7.21kN
Totalshearforce=64+7.21=71.21kN
13

3.Designofinteriorslabpanel:
Designofsection
Effectivedepth
Adoptoveralldepth=200mm
Areaoftensionreinforcementisgivenby
Similarlycalculatereinforcementinlongerspandirection
14mm175
1000x1.1
10x698.33
Qb
M
d
6
 2
6
st
st mm1170
175x9.0x200
10x698.33
jd
M
A 

3.Designofinteriorslabpanel:
Checkforshearstress
Nominalshearstress
152
mm/N4.0
175x1000
1000x21.71
bd
V


3.Designofinteriorslabpanel:
Checkforshearstress
16
Maximumpermissibleshear
stress
Permissibleshearstress
Hencesafeinpermissible
limits2
max mm/N9.1 2
c mm/N36.0

Design of Girders
17

4.Designoflongitudinalgirders:
Deadloadsfromslabforgirder
18
0.2 m
0.6 m
1.85 m 2.5 m 2.5 m
0.3 m
1.0 m
1.4 m
0.3 m
W
1 W
2
W
1.2+2(0.85)
=2.05m
Axis of
bridge
CG of
loads
e=1.1 m

4.Designoflongitudinalgirders:
Deadloadsfromslabforgirder
Weightof
1.Parapet=2x0.7=1.4kN/m
2.Wearingcoat=0.08x7.5x22=13.2kN/m
3.Deckslab=0.2x7.5x24=36kN/m
4.Kerb=2(0.5x0.6x24)=14.4kN/m
Totaldeadload=1.4+13.2+36+14.4=65kN/m
Itisassumedthatthedeadloadisequallysharedbyallgirders.
Deadloadpergirder=65/3=21.66kN/m
19

4.Designoflongitudinalgirders:
Reactionfactors
UsingCourbon’smethod,thereactionfactorsarecalculatedas
follows:
Where, R
x= Reaction factor for the girder under consideration
I = Moment of Inertia of each longitudinal girder
d
x= distance of the girder under consideration from the central
axis of the bridge
W = Total concentrated live load
n = number of longitudinal girders
e = Eccentricity of live load with respect to the axis of the
bridge.
20























 edI
d
I
1
n
W
R
x
2
x
x

4.Designoflongitudinalgirders:
Reactionfactors
Reactionfactorforoutergirder
Reactionfactorforinnergirder
SinceW
1=0.5W;R
A=0.48W;R
B=0.33W;
211
2
1
A W96.01.1x5.2
5.2Ix3
I3
1
3
W2
R 


















 
1
1
B W66.001
3
W2
R 





4.Designoflongitudinalgirders:
LiveloadBMs
Bendingmoment=4x700=2800kN.m
Bendingmomentincludingimpactfactorandreactionfactor=
Reactionfactor=2800x1.25x0.48=1680kNm(foroutergirder)
Bendingmomentincludingimpactfactorandreactionfactor=
Reactionfactor=2800x1.25x0.33=1155kNm(forinnergirder)
22

4.Designoflongitudinalgirders:
LiveloadShears
ReactionongirderB=(350x0.45)/2.5=63kN
ReactionongirderA=(350x2.05)/2.5=287kN
MaximumreactionongirderB=(63x14.2)/16=56kN
MaximumreactionongirderA=(287x14.2)/16=255kN
Consideringimpactfactor=56x1.25=70kN(girderB)
Consideringimpactfactor=255x1.25=318.75kN(girderA)
23

4.Designoflongitudinalgirders:
DeadloadBMandSFs
Thedepthofthegirderisassumedas1600mm.
Depthofrib=1.4m
Widthofrib=0.3m
Weightofrib=1x1.4x0.3x24=10.08kN/m(permeter)
Thecrosssectionisassumedtohavethesamecrosssection
dimensionofmaingirder.
Henceweightofcrossgirder=10.08kN/m(permeter)
Reactiononmaingirder=10.08x2.5=25.2kN
24
10.08 kN/m

25
Tags