diagrammatic and graphical representation of data

74,583 views 48 slides Jul 19, 2018
Slide 1
Slide 1 of 48
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48

About This Presentation

BSM - Manglore University


Slide Content

Oneofthemostconvincingandappealingwaysin
whichstatisticalresultsmaybepresentedisthrough
diagramsandgraphs.
Justonediagramisenoughtorepresentagiven
datamoreeffectivelythanthousandwords.
Iteasytounderstanddiagramsevenforordinary
people.
Introduction

Adiagramisavisualformforpresentationofstatistical
data,highlightingtheirbasicfactsandrelationship.
Ifwedrawdiagramsonthebasisofthedatacollected
theywilleasilybeunderstoodandappreciatedbyall.
Itisreadilyintelligibleandsaveaconsiderableamount
oftimeandenergy.
Diagrams

Significance of Diagrams and
Graphs
1.They are attractive and impressive.
2.They make data simple and intelligible.
3.They make comparison possible
4.They save time and labour.
5.They have universal utility.
6.They give more information.
7.They have a great memorizing effect.

General rules for constructing
diagrams
1.Adiagramshouldbeneatlydrawnandattractive.
2.Themeasurementsofgeometricalfiguresusedin
diagramshouldbeaccurateandproportional.
3.Thesizeofthediagramsshouldmatchthesizeofthe
paper.
4.Everydiagrammusthaveasuitablebutshortheading.
5.Thescaleshouldbementionedinthediagram.
6.Diagramsshouldbeneatlyaswellasaccuratelydrawn
withthehelpofdrawinginstruments.
7.Indexmustbegivenforidentificationsothatthereader
caneasilymakeoutthemeaningofthediagram.
8.Footnotemustbegivenatthebottomofthediagram.
9.Economyincostandenergyshouldbeexercisedin
drawingdiagram.

Types of
Diagrams
One-
dimensional
Diagrams
Two-
dimensional
Diagrams
Three-
dimensional
Diagrams
Pictograms
and
cartograms

Insuchdiagrams,onlyone-dimensionalmeasurement,i.e.
heightisusedandthewidthisnotconsidered.
Line
diagram
Simple
diagram
Multiple
bar
diagram
Sub-divided
bar
diagram
Percentage
bar
diagram

Line Diagram
•Linediagramisusedincasewheretherearemanyitemsto
beshownandthereisnotmuchofdifferenceintheirvalues.
•Suchdiagramispreparedbydrawingaverticallineforeach
itemaccordingtothescale.
•Thedistancebetweenlinesiskeptuniform.
•Linediagrammakescomparisoneasy,butitislessattractive.

Simple Bar Diagram
•Simplebardiagramcanbedrawneitheronhorizontalor
verticalbase.
•Barsmustbeuniformwidthandinterveningspacebetween
barsmustbeequal.
•Whileconstructingasimplebardiagram,thescaleis
determinedonthebasisofthehighestvalueintheseries.
•Tomakethediagramattractive,thebarscanbecoloured.
•Bardiagramareusedinbusinessandeconomics.

Simple Bar Diagram (Cont)
•However,animportantlimitationofsuchdiagramsisthatthey
canpresentonlyoneclassificationoronecategoryofdata.
•Forexample,whilepresentingthepopulationforthelastfive
decades,onecanonlydepictthetotalpopulationinthe
simplebardiagrams,andnotitssex-wisedistribution.

Multiple Bar Diagram
•Multiplebardiagramisusedforcomparingtwoormoresets
ofstatisticaldata.
•Barsareconstructedsidebysidetorepresentthesetof
valuesforcomparison.
•Inordertodistinguishbars,theymaybeeitherdifferently
colouredorthereshouldbedifferenttypesofcrossingsor
dotting,etc.
•Anindexisalsopreparedtoidentifythemeaningofdifferent
coloursordottings.

Sub-divided Bar Diagram
•Inasub-dividedbardiagram,thebarissub-dividedinto
variouspartsinproportiontothevaluesgiveninthedataand
thewholebarrepresentthetotal.
•SuchdiagramsarealsocalledComponentBardiagrams.
•Thesubdivisionsaredistinguishedbydifferentcolorsor
crossingsordotting.
•Themaindefectofsuchadiagramisthatallthepartsdonot
haveacommonbasetoenableonetocompareaccurately
thevariouscomponentsofthedata.

Example 4 Represent the following data by a sub-
divided bar diagram.

Percentage Bar Diagram
•Thecomponentsarenottheactualvaluesbutpercentagesof
thewhole.
•Themaindifferencebetweenthesub-dividedbardiagramand
percentagebardiagramisthatintheformerthebarsareof
differentheightssincetheirtotalsmaybedifferentwhereasin
thelatterthebarsareofequalheightsinceeachbar
represents100percent.
•Inthecaseofdatahavingsub-division,percentagebar
diagramwillbemoreappealingthansub-dividedbardiagram.

Intwo-dimensionaldiagramsthearearepresentthedata
andsothelengthandbreadthhavebothtobetakeninto
account.
Suchdiagramsarealsocalledareadiagramsorsurface
diagrams.
Theimportanttypesofareadiagramsare:
1.Rectangles.
2.Squares.
3.Pie-diagrams

Rectangles
•Rectanglesareusedtorepresenttherelativemagnitudeof
twoormorevalues.
•Theareaoftherectanglesarekeptinproportiontothe
values.
•Rectanglesareplacedsidebysideforcomparison.
•Wemayrepresentthefiguresastheyaregivenormay
convertthemtopercentagesandthensubdividethelength
intovariouscomponents.

•Solution: The items of expenditure will be converted into percentage as
shown below

Squares
•Therectangularmethodofdiagrammaticpresentationis
difficulttousewherethevaluesofitemsvarywidely.
•Themethodofdrawingasquarediagramisverysimple.
•Onehastotakethesquarerootofthevaluesofvariousitem
thataretobeshowninthediagramsandthenselecta
suitablescaletodrawthesquares.

Pie Diagram or Circular Diagram
•Insuchdiagrams,boththetotalandthecomponentpartsor
sectorscanbeshown.Theareaofacircleisproportionalto
thesquareofitsradius.
•Whilemakingcomparisons,piediagramsshouldbeusedon
apercentagebasisandnotonanabsolutebasis.
•Example8:DrawaPiediagramforthefollowingdataof
productionofsugarinquintalsofvariouscountries.

Itconsistsofcubes,cylinders,spheres,etc.
Insuchdiagramsthreethings,namelylength,widthandheight
havetobetakenintoaccount.
Ofallthefigures,makingofcubesiseasy.Sideofacubeis
drawninproportiontothecuberootofthemagnitudeofdata.
Cubesoffigurescanbeascertainedwiththehelpoflogarithms.
Thelogarithmofthefigurescanbedividedby3andtheantilog
ofthatvaluewillbethecube-root.

Pictogramsarenotabstractpresentationsuchaslines
orbarsbutreallydepictthekindofdatawearedealing
with.
Picturesareattractiveandeasytocomprehendandas
suchthismethodisparticularlyusefulinpresenting
statisticstothelayman.
WhenPictogramsareused,dataarerepresented
throughapictorialsymbolthatiscarefullyselected.

Cartogramsorstatisticalmapsareusedtogive
quantitativeinformationasageographicalbasis.
Theyareusedtorepresentspatialdistributions.
Thequantitiesonthemapcanbeshowninmany
wayssuchasthroughshadesorcolorsordotsor
placingpictogramineachgeographicalunit.

Graphs
Agraphisavisualformofpresentationof
statisticaldata.
Agraphismoreattractivethanatableoffigure.
Evenacommonmancanunderstandthemessage
ofdatafromthegraph.
Comparisonscanbemadebetweentwoormore
phenomenaveryeasilywiththehelpofagraph.

Graphs
Histogram
Frequency
Polygon
Frequency CurveOgive
Lorenz Curve

A. Histogram
Ahistogramisabarchartorgraphshowingthefrequency
ofoccurrenceofeachvalueofthevariablebeing
analyzed.
Inhistogram,dataareplottedasaseriesofrectangles.
Classintervalsareshownonthe‘X-axis’andthe
frequenciesonthe‘Y-axis’.
Theheightofeachrectanglerepresentsthefrequencyof
theclassinterval.Eachrectangleisformedwiththeotherso
astogiveacontinuouspicture.Suchagraphisalsocalled
staircaseorblockdiagram.
wecannotconstructahistogramfordistributionwithopen-
endclasses.Itisalsoquitemisleadingifthedistributionhas
unequalintervalsandsuitableadjustmentsinfrequencies
arenotmade.

B. Frequency Polygon
Ifwemarkthemidpointsofthetophorizontalsidesof
therectanglesinahistogramandjointhembya
straightline,thefiguresoformediscalledaFrequency
Polygon.
Thisisdoneundertheassumptionthatthefrequenciesin
aclassintervalareevenlydistributedthroughoutthe
class.
Theareaofthepolygonisequaltotheareaofthe
histogram,becausethearealeftoutsideisjustequalto
theareaincludedinit.

C. Frequency Curve
Ifthemiddlepointoftheupperboundariesofthe
rectanglesofahistogramiscorrectedbyasmooth
freehandcurve,thenthatdiagramiscalledfrequency
curve.
Thecurveshouldbeginandendatthebaseline.

D. Ogives
Forasetofobservations,weknowhowtoconstructa
frequencydistribution.Insomecaseswemayrequire
thenumberofobservationslessthanagivenvalueor
morethanagivenvalue.
Thisisobtainedbyaaccumulating(adding)the
frequenciesupto(orabove)thegivevalue.This
accumulatedfrequencyiscalledcumulativefrequency.
Thesecumulativefrequenciesarethenlistedinatable
iscalledcumulativefrequencytable.Thecurvetableis
obtainedbyplottingcumulativefrequenciesiscalleda
cumulativefrequencycurveoranogive.

Ogive
The ‘ less
than ogive’
method
The ‘more
than ogive’
method.

•Inlessthanogivemethodwestartwiththe
upperlimitsoftheclassesandgoaddingthe
frequencies.Whenthesefrequenciesare
plotted,wegetarisingcurve.
•Inmorethanogivemethod,westartwiththe
lowerlimitsoftheclassesandfromthetotal
frequencieswesubtractthefrequencyof
eachclass.Whenthesefrequenciesare
plottedwegetadecliningcurve.

Class
limit
Less than ogive Morethan ogive
20 0 110
30 4 106
40 10 100
50 23 87
60 48 62
70 80 30
80 99 11
90 107 3
100 110 0

E. Lorenz Curve
Lorenzcurveisagraphicalmethodofstudyingdispersion.It
wasintroducedbyMax.O.Lorenz,agreatEconomistanda
statistician,tostudythedistributionofwealthandincome.
Itisalsousedtostudythevariabilityinthedistributionof
profits,wages,revenue,etc.
Itisspeciallyusedtostudythedegreeofinequalityinthe
distributionofincomeandwealthbetweencountriesor
betweendifferentperiods.
Itisapercentageofcumulativevaluesofonevariablein
combinedwiththepercentageofcumulativevaluesinother
variableandthenLorenzcurveisdrawn.

E. Lorenz Curve (Cont)
Thecurvestartsfromtheorigin(0,0)andendsat
(100,100).Ifthewealth,revenue,landetcareequally
distributedamongthepeopleofthecountry,thenthe
Lorenzcurvewillbethediagonalofthesquare.Butthis
ishighlyimpossible.
ThedeviationoftheLorenzcurvefromthediagonal,
showshowthewealth,revenue,landetcarenotequally
distributedamongpeople.