differential-calculus-topic-1 elimination of arbitraryconstant.pdf

JeorgeLouieDelaCruz 17 views 29 slides Aug 21, 2024
Slide 1
Slide 1 of 29
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29

About This Presentation

learn how to differentiate arbitrary constant


Slide Content

insertframenavigationsymbol1/24
DIFFERENTIAL EQUATIONS
Engr. Ricky S. Valenzuela
Philippine College of Science and Technology
Old Nalsian Road, Nalsian, Calasiao, Pangasinan Phil.2418
1st Semester, Academic Year 2024-2025
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol2/24
Differential Equations
Course Description
This course is intended for all engineering students to have a firm
foundation of differential equations in preparing for their
degree-specific advanced mathematics courses. It covers first order
differential equations,n
th
order linear differential equations and
systems of first order linear differential equations. It also
introduces the concept of Laplace Transforms in solving differential
equations. The students are expected to be able to recognize
different kinds of differential equations, determine the existence
and uniqueness of solution, select the appropriate methods of
solution and interpret the obtained solution. Students are also
expected to relate differential equations to various practical
engineering and scientific problems as well as employ computer
technology in solving and verifying solutions.
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol3/24
Topic 1: Definitions, Elimination of Arbitrary Constants
Differential Equation
It is an equation containing differentials or derivatives of a function
of one independent variable. The following are examples of
differential equations:
dy
dx
=x+ 5
dy
dx
= cosx
d
2
y
dx
2
+k
2
y= 0
(x
2
+y
2
)dx−2xydy= 0

2
V
∂x
2
+

2
V
∂y
2
= 0
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol4/24
Topic 1: Definitions, Elimination of Arbitrary Constants
Ordinary Differential Equation
If there is a single independent variable, the derivatives are ordinary
derivatives.
d
2
y
dx
2
+ 3
dy
dx
+ 2y= 0
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol5/24
Topic 1: Definitions, Elimination of Arbitrary Constants
Partial Differential Equation
If there are two or more independent variable, the derivatives are
partial derivatives.
∂z
∂x
=z+x
∂z
∂y
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol6/24
Topic 1: Definitions, Elimination of Arbitrary Constants
Order of a Differential Equation
It is the order of the highest-ordered derivative appearing in the
equation.
d
2
y
dx
2
+ 3
dy
dx
+ 2y= 0
is of the second order.
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol7/24
Topic 1: Definitions, Elimination of Arbitrary Constants
Degree of a Differential Equation
It is the degree of the highest ordered derivative which then occurs.
(y
′′
)
2
+ (y

)
3
+ 3y=x
2
is of the second degree.
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol8/24
Topic 1: Definitions, Elimination of Arbitrary Constants
Linear vs Nonlinear Differential Equations
Figure:
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol9/24
Topic 1: Definitions, Elimination of Arbitrary Constants
Example:
Figure:Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol10/24
Review Problems
Problem:
Give the order and the degree of the following differential
equations. State whether ordinary or partial,also whether linear or
nonlinear.
x
2dy
dx
+x
d
2
y
dx
2+y
2
= 1
Order:2, Degree:1, Ordinary, Linear
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol10/24
Review Problems
Problem:
Give the order and the degree of the following differential
equations. State whether ordinary or partial,also whether linear or
nonlinear.
x
2dy
dx
+x
d
2
y
dx
2+y
2
= 1
Order:2, Degree:1, Ordinary, Linear
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol11/24
Review Problems
Problem:
Give the order and the degree of the following differential
equations. State whether ordinary or partial,also whether linear or
nonlinear.
`
dy
dx
´
3
+xy
d
2
y
dx
2=ky
Order:2, Degree:1, Ordinary, Nonlinear
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol11/24
Review Problems
Problem:
Give the order and the degree of the following differential
equations. State whether ordinary or partial,also whether linear or
nonlinear.
`
dy
dx
´
3
+xy
d
2
y
dx
2=ky
Order:2, Degree:1, Ordinary, Nonlinear
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol12/24
Review Problems
Problem:
Give the order and the degree of the following differential
equations. State whether ordinary or partial,also whether linear or
nonlinear.
y
′′′
−3y” + 2y

+y= 0 Order:3, Degree:1, Ordinary, Linear
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol12/24
Review Problems
Problem:
Give the order and the degree of the following differential
equations. State whether ordinary or partial,also whether linear or
nonlinear.
y
′′′
−3y” + 2y

+y= 0 Order:3, Degree:1, Ordinary, Linear
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol13/24
Review Problems
Problem:
Give the order and the degree of the following differential
equations. State whether ordinary or partial,also whether linear or
nonlinear.

2
ω
∂t
2=a
2∂
2
ω
∂x
2
Order:2, Degree:1, Partial, Nonlinear
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol13/24
Review Problems
Problem:
Give the order and the degree of the following differential
equations. State whether ordinary or partial,also whether linear or
nonlinear.

2
ω
∂t
2=a
2∂
2
ω
∂x
2
Order:2, Degree:1, Partial, Nonlinear
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol14/24
Review Problems
Problem:
Give the order and the degree of the following differential
equations. State whether ordinary or partial,also whether linear or
nonlinear.
2x
∂t
∂x
+ 4y
∂t
∂y
= 0
Order:1, Degree:1, Partial, Linear
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol14/24
Review Problems
Problem:
Give the order and the degree of the following differential
equations. State whether ordinary or partial,also whether linear or
nonlinear.
2x
∂t
∂x
+ 4y
∂t
∂y
= 0
Order:1, Degree:1, Partial, Linear
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol15/24
Definitions:
Solution of a Differential Equation
⇒is any non-derivative relationship between the variables in the
equation and which satisfies the differential equations.
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol16/24
Definitions:
Particular Solution
⇒it is derived from the general solution wherein the arbitrary
constant becomes absolute by means of a given initial condition.
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol17/24
Definitions:
General Solution
⇒it it contains an arbitrary constant.
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol18/24
General Solution vs Particular Solution
Example:
Given
y

= 2x+ 1.
Obtain the general solution and the particular solution at an initial
conditionx= 2 andy= 1.
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol19/24
Elimination of Arbitrary Constants
Example 1:
Eliminate the arbitrary constant
xsiny+x
2
y=c
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol20/24
Elimination of Arbitrary Constants
Example 1:
Eliminate the arbitrary constant
xsiny+x
2
y=c
Answer:(siny+ 2xy)dx+ (xcosy+x
2
)dy= 0
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol21/24
Elimination of Arbitrary Constants
Example 2:
Eliminate the arbitrary constant
y=c1+c2e
3x
.
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol22/24
Elimination of Arbitrary Constants
Example 2:
Eliminate the arbitrary constant
y=c1+c2e
3x
.
Answer:y
′′
−3y

= 0
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol23/24
Elimination of Arbitrary Constants
Example 3:
Eliminate the arbitrary constant
x=Asin(ωt+β);ωa parameter not to be eliminated.
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS

insertframenavigationsymbol24/24
Elimination of Arbitrary Constants
Example 3:
Eliminate the arbitrary constant
x=Asin(ωt+β);ωa parameter not to be eliminated.
Answer:
d
2
x
dt
2+ω
2
x= 0
Engr. Ricky S. Valenzuela DIFFERENTIAL EQUATIONS
Tags