digital electronics PPT.pdfggjjnjjjjuuhhh

abhijeet002saha 20 views 75 slides Aug 12, 2024
Slide 1
Slide 1 of 75
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75

About This Presentation

Good


Slide Content

Difference between analog and digital signals, Boolean algebra, Basic and
Universal Gates, Symbols, Truth tables, logic expressions, Logic simplification using
K-map, Logic ICs, half and full adder/subtractor, multiplexers, demultiplexers, flip-
flops, shift registers, counters, Block diagram of microprocessor/microcontroller
and their applications.
Module III: Digital Electronics Fundamentals

ANDgate
□The AND gate is an electronic circuit that
gives a high output (1) only if all its inputs
arehigh.
□AND gate takes two or more input signals
and produceonlyoneoutputsignal.
Input InputOutput
A B AB
0 0 0
0 1 0
1 0 0
1 1 1

ORgate
□The OR gate is an electronic circuit that
givesahighoutput(1)if oneormoreofits
inputsarehigh.
□OR gate also takes two or more input
signals and produceonlyoneoutputsignal.
Input Input Output
A B A+B
0 0 0
0 1 1
1 0 1
1 1 1

NOTgate



□The NOT gate is an electronic circuit that gives a
highoutput(1)ifitsinputislow .
NOT gate takes only one input signal and produce
onlyoneoutputsignal.
TheoutputofNOTgateiscomplementofitsinput.
Itisalsocalledinverter.
InputA OutputA
0
1
1
0

TruthTable
□Truthtableisatablethatcontains all
possible values of logical
variables/statements in a Boolean
expression.
No.ofpossiblecombination=
2
n
,wheren=number ofvariablesusedin
aBooleanexpression.

TruthTable
□The truthtablefor XY+Zisas
follows:
Dec X Y Z XY XY+Z
0 0 0 0 0 0
1 0 0 1 0 1
2 0 1 0 0 0
3 0 1 1 0 1
4 1 0 0 0 0
5 1 0 1 0 1
6 1 1 0 1 1
7 1 1 1 1 1

PrincipalofDuality
□InBooleanalgebrastheduality
Principlecanbeisobtainedby
interchangingANDandORoperators
andreplacing0'sby1'sand1'sby
0's.Comparetheidentitiesonthe
leftsidewiththeidentitiesonthe
right.
Example
X.Y+Z'=(X'+Y').Z

Basic Theorem of Boolean
Algebra
T1:Propertiesof0
(a)0+A=A
(b)0A=0
T2:Propertiesof1
(a)1+A=1
(b)1A=A

Basic Theorem of Boolean Algebra
T3:Commutative Law
(a)A+B=B+A
(b)AB=BA
T4:AssociateLaw
(a)(A+B) +C=A+(B+C)
(b)(AB)C=A(BC)
T5:DistributiveLaw
(a)A(B+C)=AB+AC
(b)A+(BC)=(A+B)(A+C)
(c)A+A’B=A+B

Basic Theorem of Boolean Algebra
T6:Indempotence (Identity)Law
(a)A+A=A
(b)AA=A
T7:Absorption(Redundance) Law
(a)A+AB=A
(b)A(A+B)=A

Basic Theorem of Boolean Algebra
T8:Complementary Law
(a)X+X’=1
(b)X.X’=0
T9:Involution
(a)x’’=x
T10:DeMorgan'sTheorem
(a)(X+Y)’=X’.Y’
(b)(X.Y)’=X’+Y’

Realization of XOR Gate using NAND and NOR Gates

Representation of Boolean expression
Booleanexpressioncanbe
representedbyeither
(i)Sum of Product( SOP) form or
(ii)Product of Sum (POS form) e.g.
AB+AC --------------SOP
(A+B)(A+C) -------POS
In above examples both are in SOP and POS respectively buttheyare
notin StandardSOPandPOS.

Canonical form of Boolean Expression
(Standardform)
➢InstandardSOPandPOSeachtermofBoolean
expressionmustcontainalltheliterals(withand
withoutbar)thathas beenusedinBoolean
expression.
➢IftheaboveconditionissatisfiedbytheBoolean
expression,thatexpressioniscalledCanonicalformof
Booleanexpression.

Canonical form of Boolean Expression
(Standardform)Contd..
➢InBooleanexpressionAB+ACthe
literalCismissioninthe1
st
term
ABandBismissionin2
nd
term
AC.ThatiswhyAB+ACisnota
CanonicalSOP.

Canonical form of Boolean Expression(Standard
form)Contd..
ConvertAB+ACinCanonicalSOP
(StandardSOP)
Sol.AB+AC
AB(C+C’) +AC(B+B’)
ABC+ABC’+ABC+AB’C
ABC+ABC’+AB’C
Distributivelaw

Canonical form of Boolean Expression(Standard
form)Contd..
Convert(A+B)(A+C) inCanonical
SOP(Standard SOP)
(A+B+C).(A+B+C’)(A+B’+C)
Sol.(A+B).(A+C)
(A+B)+(C.C’) . (A+C)+(B.B’)
(A+B+C).(A+B+C’).(A+B+C)(A+B’+C) Distributivelaw
Removeduplicates

Canonical form of Boolean Expression(Standard
form)Contd..
MintermandMaxterm
IndividualtermofCanonicalSumofProducts
(SOP)iscalledMinterm.Inotherwordsminterm
isaproductofalltheliterals(withorwithout
bar)withintheBooleanexpression.
IndividualtermofCanonicalProductsofSum
(POS)iscalledMaxterm.Inotherwords
maxtermisasumofalltheliterals(withor
withoutbar)withintheBooleanexpression.

Minterms&Maxterms for2variables(Derivationof
BooleanfunctionfromTruthTable)
xyIndex Minterm Maxterm
00 0 m
0=x’y’ M
0=x+y
01 1 m
1=x’y M
1=x+y’
10 2 m
2=xy’ M
2=x’+y
11 3 m
3=xy M
3=x’+y’
Themintermm
ishould evaluateto1for eachcombination
ofxandy.
The maxterm is the complement of the minterm

Minterms&Maxtermsfor3 variables
MaxtermM
iisthe complementofmintermm
i
M
i= m'
iandm
i=M'
i
x
MaxtermyzIndex Minterm
000 0 m
0=x’ y’ z’M
0 =x+y+z
001 1 m
1=x’ y’ zM
1 =x+y+z’
010 2 m
2=x’ y z’M
2 =x+y’ + z
011 3 m
3=x’ y z M
3 =x+y’+z’
100 4 m
4=x y’ z’M
4 =x’ + y + z
101 5 m
5=x y’ z M
5 =x’+ y + z’
110 6 m
6=xyz' M
6 =x’ + y’ + z
111 7 m
7=xyz M
7 =x'+y'+z'

MinimizationofBoolean Expression
(Contd…)
➢AlgebraicMethod
-The differentBooleanrulesandtheoremsareused to
simplifytheBooleanexpressioninthismethod.

MinimizationofBoolean Expression
(Contd…)
SolvedProblem
MinimizethefollowingBooleanExpression:
1.a’bc+ab’c’+ab’c +abc’+abc
=a’bc +ab’+ab
= a’bc +a
2.AB’CD’+AB’CD+ABCD’+ABCD
=AB’C +ABC
=AC

MinimizationofBoolean
Expression(Contd…)
KarnaughMap
□K-Mapsareaconvenient waytosimplify Boolean Expressions.
□Theycan beusedforupto 4 or5 variables.
□Theyareavisualrepresentation ofa truth table.

TruthtabletoK-Map(2variable minterm)
ABP
001
011
100
111
0
1 1
minterms arerepresentedbya
1 in the corresponding
locationintheKmap.
Theexpressionis:
A.B+A.B+A.B
A
B
A’
A
B’
0
1
B
1
1

K-Maps(2Variablesk-mapcontd…)
□Adjacent1’scanbe“pairedoff”
□Anyvariablewhichisbotha1andazerointhis
pairingcanbeeliminated
□Pairsmay be adjacenthorizontallyorvertically
A 0
01
1
1
1
1
apair
anotherpair
B is eliminated,
leavingAasthe
term
A is eliminated,
leavingBasthe
term
Afterreductionthe
expressionbecomesA+B
B
The expression is:
A’.B’ +A’.B+A.B

□ThreeVariableK-Map
ABCP
0000
0010
0101
0110
1001
1010
1101
1110
A
0
11
00011110
1
1
A.B.C+A.B.C+A.B.C
BC
One square filled in for
each minterm.

GroupingthePairs
A 00 01 11
0
11 1
equatestoB.CasA
iseliminated.
10
1
Here, we can “wrap
around”andthis
pair equates to A.C
asBiseliminated.
Ourtruthtablesimplifiesto
A.C +B.Casbefore.
BC
ThreeVariableK-Map(Contd…)

ExpressionisABC+A’BC’+A’BC+ABC’
Groups of4in ablock can beused toeliminatetwo
variables:
QUAD=A’BC+A’BC’+ABC+ABC’
=A’B+AB
=B
BC
A 00011110
0 11
1 11
ABCY
0000
0010
0101
0111
1000
1010
1101
1111
ThreeVariableK-Map(Contd…)
Groupsof4

Four Variable K-Map

half adder

Sum= A XOR B Carry = A AND B

Full adder
Inputs Outputs
A B Cin S (Sum) Cout(Carry)
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Sum, S = A ⊕B ⊕Cin
Carry, C= AB + ACin+ BCin

Half Subtractor
Inputs Outputs
A B d (Difference)b (Borrow)
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

Full Subtractor
Inputs Outputs
Minuend (A)Subtrahend (B)Borrow (Bin)Difference (D)Borrow (Bout)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Difference,d=A ⊕B ⊕bin = A′B′bin+AB′b′in+A′Bb′in+ABbin
Borrow, b=A′B + (A ⊕B)′bin

multiplexers

the implementation of 4:1 Multiplexer using truth table and gates.

De-Multiplexer

Selection Inputs Outputs
S
1 S
0 Y
3 Y
2 Y
1 Y
0
0 0 0 0 0 I
0 1 0 0 I 0
1 0 0 I 0 0
1 1 I 0 0 0

flip-flops
SR Flip-Flop

S R Qt+1
0 0 Qt
0 1 0
1 0 1
1 1 -
statetableofSRflip-flop.

Present Inputs Present StateNext State
S R Qt Qt+1
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 x
1 1 1 x
thecharacteristictableofSRflip-flop.

Q(t)Q(t+1)S R
0 0 0 x
0 1 1 0
1 0 0 1
1 1 x 0
Excitation Table

JK Flip-Flop

J K Qt+1
0 0 Qt
0 1 0
1 0 1
1 1 Qt'
state tableof JK flip-flop

Present Inputs Present
State
Next State
J K Qt Qt+1
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0
characteristictableofJKflip-flop.

Excitation table
Q(t)Q(t+1)J K
0 0 0 x
0 1 1 x
1 0 x 1
1 1 x 0

D Flip-flop
D Q(t+1)
0 0
1 1
Truth Table

Characteristic Equation
Q(t+1) = D(t)
Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1
Excitation Table

T Flip-Flop

D Qt+1
0 Qt
1 Qt’
state tableof T flip-flop.
Inputs Present StateNext State
T Qt Qt+1
0 0 0
0 1 1
1 0 1
1 1 0
thecharacteristic tableof T flip-flop.

Q(t) Q(t+1)T
0 0 0
0 1 1
1 0 1
1 1 0
Excitation Table

Shift Register
•SISO: Serial-in Serial-out: It permits the insertion of data serially and taking the output also in a
serial manner.
•SIPO: Serial-in Parallel-out: Here the data is inserted serially either from the left or right
direction. But the output is taken parallely.
•PISO: Parallel-in Serial-out: This type of shift register allows the parallel input of data bit, but
the output is taken serially.
•PIPO: Parallel-in Parallel-out: PIPO shift register permits both in and out of data bit in a parallel
manner.
Definition: A shift register is a sequential logic circuit that acts as a unit to store and transfer
binary data.

Serial-In Parallel-Out shift Register (SIPO)

Parallel-In Serial-Out Shift Register (PISO)

Parallel-In Parallel-Out Shift Register (PIPO) –

Applications of shift Registers –
•The shift registers are used for temporary data storage.
•The shift registers are also used for data transfer and data manipulation.
•The serial-in serial-out and parallel-in parallel-out shift registers are used to
produce time delay to digital circuits.
•The serial-in parallel-out shift register is used to convert serial data into
parallel data thus they are used in communication lines where
demultiplexing of a data line into several parallel line is required.
•A Parallel in Serial out shift register us used to convert parallel data to
serial data.

Counters
A special type of sequential circuit used to count the pulse is known as a counter, or a collection of flip flops
where the clock signal is applied is known as counters.
There are the following types of counters:
•Asynchronous Counters
•Synchronous Counters

Asynchronous or ripple counters
TheAsynchronous counteris also known as theripple counter
Block Diagram

Signal Diagram

Synchronous counters
In theAsynchronous counter, the present counter's output passes to the input of the next counter.
Logical Diagram

Signal Diagram

Block diagram of microprocessor/microcontroller and their applications.

Applications
Household Devices
•Theprogrammable thermostatallows the control of temperature at homes.
•High-end coffee makers, Washing machines, and radio clocks contain microprocessor technology.
•Some other home items that contain microprocessors are: microwaves, toasters, televisions, VCRs, DVD
players, ovens, stoves, clothes washers, stereo systems,
Industrial Applications of Microprocessors
Some industrial items which use microprocessors technology include: cars, boats, planes, trucks, heavy machinery,
elevators, gasoline pumps, credit-card processing units, traffic control devices,

Transportation Industry
•Automobiles, trains and planes also use microprocessor technology.
Computers and Electronics
•Microprocessor-drives technology is the brain of the computer. They are used in all type of computers
ranging from microcomputers to supercomputers.
•A cell phone or mobile device executes game instructions by way of the microprocessor.

In Medicals
•Many medical devices, like an insulin pump, are typically controlled by a microprocessor. The microprocessors
perform various functions, such as processing data from bio-sensors, storing measurements, and analyzing results.
Instrumentation
•Microprocessor is also very useful in the field of instrumentation. Function generators, frequency counters,
frequency synthesizers, spectrum analyses and many other instruments are available, when microprocessors are
used as controller.
Entertainment
•The use of microprocessor in entertainment equipment, toys and home entertaining applications is making them
more useful and full of features.

Office Automation and Publication
•Microprocessor based system with software packages has changed the office environment. Microprocessors
based systems are being used for spread sheet operations, word processing, storage etc.
Communication
•In communication the telephone industry is most important. In this industry, microprocessors are used in digital
telephone sets, telephone exchanges and modem etc.
•The use of microprocessor in satellite communication, television, has made teleconferencing possible.
•Railway reservation and airline reservation system also uses microprocessor technology. WAN (Wide Area
Network) and LAN (Local Area Network) for communication of vertical information through computer network.
Tags