Division of Polynomials Using 2 Long Division and Synthetic Division Method
RomualdoDayrit1
144 views
35 slides
Sep 09, 2024
Slide 1 of 35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
About This Presentation
A powerpoint presentation that focuses on the division of polynomials
Size: 1.33 MB
Language: en
Added: Sep 09, 2024
Slides: 35 pages
Slide Content
Module 7: Division of Polynomials Mathematics 10
Drill
A. Divide the ff. 1. 2. 3. 4.
B. Multiply the ff. 1. 2. 3. 4.
Review
Polynomials A polynomial expression P(x) is an expression of the form Where: and the degree n is a non-negative integer . The coefficients are real numbers.
Polynomials Writing the terms in decreasing powers of the variable x is said to be in Standard Form . By Convention:
Which is not a polynomial?
Which is not a polynomial?
Which is not a polynomial?
Which is not a polynomial?
Which is not a polynomial?
Division of Polynomials
Division Statement Since the remainder is 0, 6 is a factor of 24.
Division Statement Since the remainder is not equal to 0, 6 is not a factor of 29.
Division of Polynomials Multiply both sides by D(x). If P(x) and D(x) are polynomials, then
The R(x) is either zero or its degree is less than the degree of D(x). If R(x) = 0, then D(x) is a factor of P(x).
Long Division
Divide the following polynomials using long division: 1. (7x 3 + 16x 2 + 2x – 1) (x + 4) REMEMBER! Always arrange both the P(x) and D(x) in the descending powers of the variable x.
OR P(x) = D(x) Q(x) + R(x)
Divide the following polynomials using long division: 2. (27x 3 + 8) (3x + 2)
OR P(x) = D(x) Q(x) + R(x)
Divide the following polynomials using long division: 3. (5x 4 – 3x 2 + 2x - 6) (x 2 - 2x + 3)
OR P(x) = D(x) Q(x) + R(x)
Synthetic Division
When a polynomial is to be divided by a binomial of the form x – c , we can shorten the process by using Synthetic Division.
Divide the following polynomials using synthetic division: 1. (3x 3 – 10x 2 – 9x + 15) (x – 4)