Division of Polynomials Using 2 Long Division and Synthetic Division Method

RomualdoDayrit1 144 views 35 slides Sep 09, 2024
Slide 1
Slide 1 of 35
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35

About This Presentation

A powerpoint presentation that focuses on the division of polynomials


Slide Content

Module 7: Division of Polynomials Mathematics 10

Drill

A. Divide the ff. 1.   2.   3.   4.  

B. Multiply the ff. 1.   2.   3.   4.  

Review

Polynomials A polynomial expression P(x) is an expression of the form   Where: and the degree n is a non-negative integer . The coefficients are real numbers.  

Polynomials Writing the terms in decreasing powers of the variable x is said to be in Standard Form . By Convention:

Which is not a polynomial?    

Which is not a polynomial?    

Which is not a polynomial?    

Which is not a polynomial?    

Which is not a polynomial?    

Division of Polynomials

Division Statement         Since the remainder is 0, 6 is a factor of 24.

Division Statement         Since the remainder is not equal to 0, 6 is not a factor of 29.

Division of Polynomials   Multiply both sides by D(x).   If P(x) and D(x) are polynomials, then

The R(x) is either zero or its degree is less than the degree of D(x). If R(x) = 0, then D(x) is a factor of P(x).

Long Division

Divide the following polynomials using long division: 1. (7x 3 + 16x 2 + 2x – 1) (x + 4)   REMEMBER! Always arrange both the P(x) and D(x) in the descending powers of the variable x.    

                               

    OR P(x) = D(x) Q(x) + R(x)    

Divide the following polynomials using long division: 2. (27x 3 + 8) (3x + 2)      

                               

    OR P(x) = D(x) Q(x) + R(x)    

Divide the following polynomials using long division: 3. (5x 4 – 3x 2 + 2x - 6) (x 2 - 2x + 3)      

                                         

    OR P(x) = D(x) Q(x) + R(x)    

Synthetic Division

When a polynomial is to be divided by a binomial of the form x – c , we can shorten the process by using Synthetic Division.

Divide the following polynomials using synthetic division: 1. (3x 3 – 10x 2 – 9x + 15) (x – 4)    

Procedures: (3) (4) = 12 -10 + 12 = 2 (2) (4) = 8 -9 + 8 = -1 (-1) (4) = -4 15 + (-4) = 11 3 -10 -9 15 12 8 -4 3 2 -1 11 Numerical coefficients of P(x) in Standard Form. 4 Quotient:  

Divide the following polynomials using synthetic division: 2. (x 3 + 6x 2 – x - 30) (x – 2)    

Procedures: (1) (2) = 2 6 + 2 = 8 (8) (2) = 16 -1+ 16 = 15 (15) (2) = 30 -30+ 30 = 0 1 6 -1 -30 2 16 30 1 8 15 0 Numerical coefficients of P(x) in Standard Form. 2 Quotient:  

Divide the following polynomials using synthetic division:   3. (3x 3 – 7x 2 – 20) (x – 3)  

Procedures: (3) (3) = 9 -7 + 9 = 2 (2) (3) = 6 0 + 6 = 6 (6) (3) = 18 -20 + 18= -2 3 -7 0 -20 9 6 18 3 2 6 -2 Numerical coefficients of P(x) in Standard Form. 3 Quotient: