Periodic Sequences
FromFourieranalysisweknowthattheperiodicfunctionscanbesynthesized
asalinearcombinationofcomplexexponentialswhosefrequenciesare
multiples(orharmonics)ofthefundamentalfrequency(whichinourcaseis
2π/N).
ThediscreteversionoftheFourierSeriescanbewrittenas
where{ ??????(??????),??????=0,±1,...,∞}arecalledthediscreteFourierseries
coefficients.
NoteThat,forintegervaluesofm,wehave
(itiscalledTwiddleFactor)
4
k
kn
N
k
N
kn
j
k
kn
N
j
k
WkX
N
ekX
N
eXnx )(
~1
)(
~1
)(
~
2
2
nmNk
N
N
nmNk
j
N
kn
j
kn
N WeeW
)(
)(
22
Synthesis and Analysis (DFS-Pairs)
5
Notation)/2(Nj
NeW
Synthesis
1
0
)(
~1
)(
~
N
k
kn
NWkX
N
nx
Analysis)(
~
)(
~
kXnx
DFS
Both have
Period N
1
0
)(
~
)(
~
N
k
kn
NWnxKX
The DFT Pair
17N
j
N
N
k
kn
N
N
k
N
kn
j
N
n
kn
N
N
n
N
kn
j
eWwhere
NnWkX
N
x
ekX
N
xSynthesis
NkWnxX
enxXAnalysis
2
1
0
1
0
2
1
0
1
0
2
1,...,1,0)(
1
n)(
)(
1
n)(
1,...,1,0)(k)(
)(k)(