Ejemplos de ejercicios resueltos de estadística

GonzaloCeballos 137 views 29 slides Mar 26, 2024
Slide 1
Slide 1 of 29
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29

About This Presentation

Ejemplos estadística


Slide Content

Unidades Vendidas Probabilidades Vendidas   Valor Esperado 25 0.15 25*0.15 3.75 26 0.3 26*0.3 7.8 27 0.4 27*0.4 10.8 28 0.15 28*0.15 4.2       26.55

Juego Premio P.E. Valor Esperado   Ganar 50,000 0.5 50000*0.5 25000 Perder 50,000 0.5 50000*0.5 25000         50000

Cantidad Tipo de premio Valor del premio Probabilidad Valor esperado 1 mayor 1000 0.0000006670 1000*0.000000667 0.000667 2 secos 50 0.0000006670 50*0.000000667 0.00003335 2 secos 20 0.0000006670 20*0.000000667 0.00001334 100 secos 2 0.0000006670 2*0.000000667 0.000001334 149 Secos 0.5 0.0000993330 0.5*0.000099333 0.000049666           0.00076469

Alternativa S1 Probabilidad S2 Probabilidad S3 Probabilidad Valor Esperado A1 $50 0.30 $70 0.50 $100 0.20 70 A2 $90 0.30 $40 0.50 $80 0.20 63 A3 $70 0.30 $60 0.50 $90 0.20 69               202

P=0.0001 N=20000 Binomial with n = 20000 and p = 0.0001 x P( X <= x ) 2 0.676676 = 0.323324

A) Binomial with n = 20 and p = 0.2 x P( X <= x ) 2 0.206085 B) Binomial with n = 20 and p = 0.2 x P( X = x ) 4 0.218199 C) Binomial with n = 20 and p = 0.2 x P( X <= x ) 3 0.411449

A) Binomial with n = 12 and p = 0.1 x P( X = x ) 2 0.230128 B) Binomial with n = 12 and p = 0.1 x P( X <= x ) 1 0.659002 C) Binomial with n = 20 and p = 0.1 x P( X <= x ) 0 0.121577

A) Binomial with n = 2 and p = 0.03 x P( X = x ) 0 0.9409 B) Binomial with n = 2 and p = 0.03 x P( X = x ) 1 0.0582 C) Binomial with n = 2 and p = 0.03 x P( X = x ) 2 0.0009

media=5 P(x<3)=p(0)+p(1)+p(2) Cumulative Distribution Function Poisson with mean = 5 x P( X <= x ) 2 0.124652

media=5 P(x>10)=1-[ p(0)+p(1)+p(2)+…+p(10)] Cumulative Distribution Function Poisson with mean = 5 x P( X <= x ) 10 0.986305 1 – 0.986305 = .013695

p=.001 n= 3000 media= np =(.001)(3)=.003 P(x=0) Probability Density Function Poisson with mean = 3 x P( X = x ) 0 0.0497871

Media=2000 ℓ=200 P(2000≤ x ≤ 2400) Cumulative Distribution Function Normal with mean = 2000 and standard deviation = 200 x P( X <= x ) 2000 0.5 Cumulative Distribution Function Normal with mean = 2000 and standard deviation = 200 x P( X <= x ) 2400 0.977250 0.977250 – 0.5 = 0.47725

Media=13 cm σ =0.1 P(13≤ x ≤ 13.2) Cumulative Distribution Function Normal with mean = 13 and standard deviation = 0.1 x P( X <= x ) 13 0.5 Cumulative Distribution Function Normal with mean = 13 and standard deviation = 0.1 x P( X <= x ) 13.2 0.977250 0.977250 – 0.5 = 0.47725

Media=980 ℓ=48 a) P(x≥1000) b)P(x≤940) c)P(960 ≤ x ≤ 1060) a) Cumulative Distribution Function Normal with mean = 980 and standard deviation = 40 x P( X <= x ) 1000 0.691462 1-0.691462= 0.308538 b) Cumulative Distribution Function Normal with mean = 980 and standard deviation = 40 x P( X <= x ) 940 0.158655 c) Cumulative Distribution Function Normal with mean = 980 and standard deviation = 40 x P( X <= x ) 960 0.308538 Cumulative Distribution Function Normal with mean = 980 and standard deviation = 40 x P( X <= x ) 1060 0.977250 0.977250 – 0.308538= 0.668712

Media=5.10 ℓ=0.40 a) P(x≥5.4) b)P(4.70 ≤ x ≤5.4) c)P(x ≥3.40) a) Cumulative Distribution Function Normal with mean = 5.1 and standard deviation = 0.4 x P( X <= x ) 5.4 0.773373 b) Cumulative Distribution Function Normal with mean = 5.1 and standard deviation = 0.4 x P( X <= x ) 4.7 0.158655 0.773373 - 0.158655 = 0.614718 c) Cumulative Distribution Function Normal with mean = 5.1 and standard deviation = 0.4 x P( X <= x ) 3.9 0.0013499 1 – 0.0013499 = 0.9987

N=1500 n=300 p=300/1500= 0.2 q=1-0.2= 0.8 Nievl de Confianza= 0.99 α= 1 -0.99 = .01 z= -2.5758293 0.22660305 * 1500= 339.904576 LS 0.17339695 * 1500= 260.095424 LI a) b) 0.21032796 *1500= 315.491933 LS 0.18967204 *1500= 284.508067 LI Cota del error [284.50, 315.49]

N1= 100 N2= 100 Media= 1425 Media= 1905 σ= 40 σ= 30 Cota del error 2.83666003 1.16333997

N= 2500 n= 85 p= 0.65 q=1-0.65= 0.35 Nievl de Confianza= 0.97 Nivel de Confianza= 0.85 α= 1 -0.97 = 0.03 α= 1 -0.97 = 0.15 z= -2.17009038 z= -1.43953147 0.67070134 * 85= 57.0096141 LS 0.663732255 *85= 56.4172417 LS 0.62327468 * 85= 52.9783479 LI 0.632271735 *85= 53.7430975 LI

M= 5.3 σ= 1.2 n= 26 5.783327959 LS Nievl de Confianza= 96% 4.816672041 LI α= 0.04 z= -2.05374891 Verdadera Media= 5

H0= m1=m2 HA: m1≠m2 One-Sample T Test of mu = 55 vs not = 55 N Mean StDev SE Mean 99% CI T P 17 50.00 7.00 1.70 (45.04, 54.96) -2.95 0.010 Inverse Cumulative Distribution Function Student's t distribution with 16 DF P( X <= x ) x 0.01 -2.58349 Rechazamos H0 por que la T calculada es > que la de tablas Afirmamos con el 99% de probabilidades que no es posible que la media de la población sea 55.

H0= m1 = m2 H4: m1≠m2 G1= n1+n2-2 =8+14-2=20 Two-Sample T-Test and CI Sample N Mean StDev SE Mean 1 8 50.00 5.00 1.8 2 14 45.00 4.00 1.1 Difference = mu (1) - mu (2) Estimate for difference : 5.00 95% CI for difference: (0.50, 9.50) T-Test of difference = 0 ( vs not =): T-Value = 2.42 P-Value = 0.032 DF = 12 Inverse Cumulative Distribution Function Student's t distribution with 20 DF P( X <= x ) x 0.05 -1.72472 T> que la t de tabla, se rechaza Ho Por lo tanto si existe una diferencia significativa entre las medias

t= ( σ₁²-σ₂²) √n-2 1.60416667 2σ₁σ₂√1- r₁₂² Inverse Cumulative Distribution Function Student's t distribution with 49 DF P( X <= x ) x 0.01 -2.40489 Se acepta H0 por que la t de tablas es mayor que la calculada

Two-Sample T-Test and CI: Campaña 1, Campaña 2 Two-sample T for Campaña 1 vs Campaña 2 N Mean StDev SE Mean Campaña 1 6 20.17 5.98 2.4 Campaña 2 6 22.17 7.25 3.0 Difference = mu (Campaña 1) - mu (Campaña 2) Estimate for difference : -2.00 99% CI for difference: (-14.47, 10.47) T-Test of difference = 0 ( vs not =): T-Value = -0.52 P-Value = 0.615 DF = 9 Inverse Cumulative Distribution Function Student's t distribution with 10 DF P( X <= x ) x 0.01 -2.76377 H0: m1≠m2 H1: m1≠m2 Aceptamos Ho

Inverse Cumulative Distribution Function Student's t distribution with 18 DF P( X <= x ) x 0.05 -1.73406 √1 - r² 0.189 n-2 0.6±1.73(.189)= 0.6±0.3 = [.91, .23] La variabilidad del coeficiente esta entre 0.91 y 0.27

H0; r1=r2 Hq ; r1≠r2 n= 50 r1= 0.72 -0.24 -0.520307601 r2= 0.78 0.611751584 r= 0.6 -0.850521053 Inverse Cumulative Distribution Function Student's t distribution with 47 DF P( X <= x ) x 0.05 -1.67793 t T calculada es < t de tablas; por tanto aceptamos H0