Ejercicios de media, moda y mediana

hubapla 1,419 views 13 slides Jul 18, 2020
Slide 1
Slide 1 of 13
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13

About This Presentation

Ejercicios de media, moda y mediana


Slide Content

EJERCICIOS DE MEDIA, MODA Y MEDIANA (9 EJERCICIOS)
1.- Sea una distribución estadística que viene dada por la siguiente tabla:
xi 61 64 67 70 73
fi 5 18 42 27 8
Calcular: La moda, mediana y media.

xi fi Fi xi · fi
61 5 5 305
64 18 23 1152
67 42 65 2184
71 27 92 1890
73 8 100 584
100 6745

Moda
Mo = 67
Mediana
102/2 = 50 Me = 67
Media

2.- Calcular la media, la mediana y la moda de la siguiente serie de números: 5, 3, 6, 5, 4, 5, 2, 8, 6, 5, 4,
8, 3, 4, 5, 4, 8, 2, 5, 4.

xi fi Fi xi · fi
2 2 2 4
3 2 4 6
4 5 9 20
5 6 15 30
6 2 17 12
8 3 20 24
20 96

Moda
Mo = 5
Mediana
20/2 = 10 Me = 5
Media


3.- Una distribución estadística viene dada por la siguiente tabla:
[10, 15) [15, 20) [20, 25) [25, 30) [30, 35)
fi 3 5 7 4 2
Hallar:

La moda, mediana y media.

xi fi Fi xi · fi
[10, 15) 12.5 3 3 37.5
[15, 20) 17.5 5 8 87.5
[20, 25) 22.5 7 15 157.5
[25, 30) 27.5 4 19 110
[30, 35) 32.5 2 21 65
21 457.5

Moda

Mediana

Media

4.- Dada la distribución estadística:
[0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, ∞)
fi 3 5 7 8 2 6
Calcular:
La mediana y moda.
Media.

xi fi Fi
[0, 5) 2.5 3 3
[5, 10) 7.5 5 8
[10, 15) 12.5 7 15
[15, 20) 17.5 8 23
[20, 25) 22.5 2 25
[25, ∞) 6 31
31

Moda

Mediana

Media
No se puede calcular la media, porque no se puede hallar la marca de clase del último intervalo.

5.- Las alturas de los jugadores de un equipo de baloncesto vienen dadas por la tabla:
Altura [170, 175) [175, 180) [180, 185) [185, 190) [190, 195) [195, 2.00)
Nº de jugadores 1 3 4 8 5 2
Calcular:
1. La media.
2. La mediana.

xi fi Fi xi · fi
[1.70, 1.75) 1.725 1 1 1.725
[1.75, 1.80) 1.775 3 4 5.325
[1.80, 1.85) 1.825 4 8 7.3
[1.85, 1.90) 1.875 8 16 15
[1.90, 1.95) 1.925 5 21 9.625
[1.95, 2.00) 1.975 2 23 3.95
23 42.925

Media

Mediana


6.- El histograma de la distribución correspondiente al peso de 100 alumnos de Bachillerato es el siguiente:

1. Formar la tabla de la distribución.
2. Calcular la moda.

3. Hallar la mediana.

1
xi fi Fi
[60,63 ) 61.5 5 5
[63, 66) 64.5 18 23
[66, 69) 67.5 42 65
[69, 72) 70.5 27 92
[72, 75) 73.5 8 100
100
Moda

Mediana

7.- Completar los datos que faltan en la siguiente tabla estadística:
xi fi Fi ni
1 4 0.08
2 4
3 16 0.16
4 7 0.14
5 5 28
6 38
7 7 45
8
Calcular la media, mediana y moda de esta distribución.
Tabla
Primera fila:
F1 = 4
Segunda fila:
F2 = 4 + 4 = 8
Tercera fila:

Cuarta fila:
N4 = 16 + 7 = 23
Quinta fila:

Sexta fila:
28 + n8 = 38 n8 = 10
Séptima fila:

Octava fila:
N8 = N = 50 n8 = 50 − 45 = 5

xi fi Fi ni xi · fi
1 4 4 0.08 4
2 4 8 0.08 8
3 8 16 0.16 24
4 7 23 0.14 28
5 5 28 0.1 25
6 10 38 0.2 60
7 7 45 0.14 49
8 5 50 0.1 40
50 238

Media artmética

Mediana
50/2 = 25 Me = 5
Moda
Mo = 6

7.- Un pediatra obtuvo la siguiente tabla sobre los meses de edad de 50 niños de su consulta en el momento
de andar por primera vez:
Meses Niños
9 1
10 4
11 9
12 16
13 11
14 8
15 1
1. Dibujar el polígono de frecuencias.
2. Calcular la moda, la mediana, la media y la varianza.

Polígono de frecuencias

xi fi Ni xi · fi
9 1 1 9
10 4 5 40
11 9 14 99
12 16 30 192
13 11 41 143
14 8 49 112
15 1 50 15
50 610

Moda
Mo = 12
Mediana
50/2 = 25 Me = 12
Media aritmética


8.- Un dentista observa el número de caries en cada uno de los 100 niños de cierto colegio. La información
obtenida aparece resumida en la siguiente tabla:
Nº de caries fi ni
0 25 0.25
1 20 0.2

2 x z
3 15 0.15
4 y 0.05
1. Completar la tabla obteniendo los valores x, y, z.
2. Hacer un diagrama de sectores.
3. Calcular el número medio de caries.

1. Tabla
La suma de las frecuencias relativas ha de ser igual a 1:
0.25 + 0.2 + z + 0.15 + 0.05 = 1
0.65 + z = 1 z = 0.35
La frecuencia relativa de un dato es igual su frecuencia absoluta dividida entre 100, que es la suma de las
frecuencias absolutas.


Nº de caries fi ni fi · ni
0 25 0.25 0
1 20 0.2 20
2 35 0.35 70
3 15 0.15 45
4 5 0.05 20
155

2. Diagrama de sectores
Calculamos los grados que corresponden a cara frecuencia absoluta.

25 · 3.6 = 90º 20 · 3.6 = 72º 35 · 3.6 = 126º
15 · 3.6 = 54º 5 · 3.6 = 18º


3. Media aritmética


9.- Se escogió un salón de clases de cuarto grado, con un total de 25 estudiantes, y se les pidió que
calificaran del 1 al 5 un programa televisivo.
(5 = Excelente 4 = Bueno 3 = Regular 4 = No muy bueno 1 = Fatal)
Estos fueron los resultados:
1 3 3 4 1
2 2 2 5 1
4 5 1 5 3
5 1 4 1 2
2 1 2 3 5

Buscar la media, la moda y la mediana e indicar si es muestra o población.
Media:
1 + 3 + 3 + 4 + 1 + 2 + 2 + 2 + 5 + 1+ 4 + 5 + 1+ 5+ 3 + 5 + 1+ 4 + 1 + 2 + 2 + 1 + 2 + 3 + 5 = 68
68/25 = 2.72 El promedio es de 2.72
Mediana:
1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5 5 5
El elemento intermedio es 2 , así que la mediana es 2
Moda:
El que más se repite es el 1.
Es población, ya que la información fue recogida de todos los estudiantes de un salón de clases.