Electromagnetic Theory: Maxwell Equations

RohitThakur758415 6 views 35 slides Jun 20, 2024
Slide 1
Slide 1 of 35
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35

About This Presentation

Electromagnetics


Slide Content

Unik 3

E Ela, yz) : Stake change (T=o)
Klay,z): von motor 4 ach“ change ( DC usrrend)

cons tamt AL 5
E =
-| Ebene Fda amd Magnetic fiads Der à (D Time vaywy
ys ene) enormen
“HCY, ZE - Ecko magnetic pas
+ &roerated eS ov EM ee

Tim Varying aan

AE #0

a
ak

T x tue

— EM
D Eve

Andenne,
Tüns vayyıng cdots
% EM ware
_» EM WAAR

Tepe

hoxvel's epration_jpr oluchostebio Palla:

An
Ertl aye

Conduction cum :

ee

> >

T- ce

I pa amd

overt he
dens”

Connect on rm: Tt

s im non conduchmp material and
ys wt vouned hy ohw's bw :

FE = p brad den in vu
ag eh TP ce mien event +

7 D Ar=20_ = = 720
a EDS
‘ AT =fxas XU
but}

He) TS — Sy.

Stotoment: Tuma cate 4 deux de Ch win a Wen
volume muse be aqnal to ne outward una
wing Homo the aupe A, vol
ao du ) Bu (be nv)
>

yt
me olume u (Mb.
‘ en 2 NOT ai a
FI % Pre
al at =
\omfinuih equobon | TT - o
For DC avant : Ye D
dt à To
Qu] z D 2
= ESS Tau = 5

fev = — [ih à

vs

elie Tame

fue Po

t=Ty hi = Oe et io
E
Rloxation Tum2 Us Hu hime Ye Ames Change plocod im the
ian

or A amatural to Arobs ko Jf “ball
NETA e Gey) +

Rdoxahen Lime pr grd cenduchy y short
Tr & (ery
e

Relaxalien Ama bye Good dichehre in hong

(=< ) For exambl :
Gopher: fore SR KIO S fun
ie =\ n
E S4X 10 Hm

LT

= Ze Er 2 3540

Quart: 510 Sf, Bye 5

Wwe Ez (hr days)

A

ZE
Y

Abby cali on nem:

a a à arte yes

— RADAR Si —
— Remote Sensing MES
yaoi Wow
seen neg
Es e 9 — Cavity >ugenaloy
— TT. Une

— Andenne

Concept_Ay Disblacomend Gwent :

Æ x? = T Ci) vies owt
y. (vx#) = yr — 2h)
pra we

ha bu Link pun ;

= V. 3D
TT = 5) TE
+

BE Eg Ci) : - | Te >
NT Te de —WD | ve
v Gx) = vTa yt >

X= T+ 2
ERE”

a Ge)
> Tine varying, elschie Hue dut
> de pal damnit

ere

|

D= tE

E() > uvam > Magmahic pad

.
home im elschic hea wat Hine cmabts wagnee.
d pdd => Maxwell

\ d Ss

YY ¿old > Dia placemat curro
Va jes MAIZ a von condushy
à À paraltel plate cobartor wih pude area A Dom”
oma flak Shuation À Sum, amd voltage ofptied
Ocres cabecdor i 50 Sm ot volt . Colwlate
dspl aroma avt ditty (E = 25%)

Sot Ty = 2D = » (#®) Lex
yt ve ve =)
=

= 2 16
d Y
5 a
Tp = Ta: § = i
= ES raviy

Eo y > % 3

r= € dv Le) | ar al x So (so) XP
de 3

\ Tp = 1474 cl El w
yA

Fanadoy’s Law,
Elche held is broduced Choma ab e
an = a à en 1

STATEMENT : Total ent around a closed lento

5 % equal do vale À dnamge Ay magnahe
Por ancleseà by thot be, amd
dined on Ar Omg = Buch Hat magnabc
fad produ cod lay ta ont (because
404) ebpous Ha ori qmal wagrehe

pad:

E
qa

EMF can be indursd in Thun ways:
(Y Magraie Han Aus (B) changes wt hme
but loop Y fixed (StaKonay) \
Creams per)

8 | EU, 5 + En Le)
fee -- De As VXE = 22) |
) à = 180 à

ds

5 at

a
E
T4
Hi I
sab

Indu

CD mate quer demi count ba Serpe
aa À Loop a mg Week e

( Gemcraby ach on)
=>
HI, Be m
er

Einor form A Max web's aration.
Tune Veryunf pad :

ee Lego ol
“Neuse va q. Bd, = dé ee
LE -
(raw? Mae se 1 Reo "re.
à E as yA
7 E Ed = - Bas
care wes ES f ay

> =
wanted À, HT FR à - Je ps

ct, p
(0 14 Y vane pun Sp aco

Dur Satin rat
Anwohchie
Y= zE a
B= pm IND = 7 E

» ETE

yxt.: 5
dE

Polar zak on (P) = ie Zi de

70
py —

of

>

D =

=

my,

= $F + PU

À >

Bar |

$= % to & — WY
Se pid VOY

ou os roe ee

Sob + Ke oF

= (a Xe) E | Reladive poured vit
\+ Xe

Fou space, Enel ( ezo)

medium

agrehe

for m

R= po (E +) Po Maprakzahon
= yzah
M= A, 8 (an) Za: Pola hon

Xn= M_
H

Mee = \+ Xm

Di magrebie Para magmeh e Fovomagnetic
Syn < ? Xun 7 D Xm 77D
Dr €l NEA My 774

Tine Harmonic. Field +
A Tune Harmonic old is eme that varies apn Sohal
4/2

ni Lime -
E > En cos (wt to) — 0

E =
he me cos (wt +0) TED (RO

> wer) = Re E eitwt+9

Er Fr Ñ
_ VS je; t

Za 2) = Re LE, el 7 ell =

esl ' = Re d Es eivt|

Red E eth
=> \ + => jwt
Red Es xe), = Ref im Es 2 Y
=>

jv Es

ML:
sen
Re. LE

E
Y fad u Time harmonic 5 .
y > wt
vx Re Ec a, = -» Re LBs el a

\ ye \
= “Ref eo}

-Re J ju Be ell

ME = -jw 83

JJ

aa
YD: a |
= reve
Y-Bs = D
Vx E
< = -ju Bs

>
YxXus = Is 2
+ pwd
Ss
Tags