Electronic spectra of metal complexes-1

33,609 views 116 slides Oct 06, 2018
Slide 1
Slide 1 of 116
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116

About This Presentation

electronic spectra of metal complexes


Slide Content

Electronic Spectra of Electronic Spectra of
Metal ComplexesMetal Complexes
V. Santhanam
Department of Chemistry
SCSVMV

Color of the complexes

Observed
Color
Light
Absorbed
Abs Wavelength /
nm
Colorless UV <380
Yellow Violet 380-450
Orange Blue 450-490
Red Green 490-550
Violet Yellow 550-580
Blue Orange 580-650
Green Red 650-700
Colorless IR >700

Use of Electronic spectrum
•Electronicspectrum–duetod-d
transitions.
•Fromthetransitionenergy–energyofd•Fromthetransitionenergy–energyofd
e
-
canbegot.
•Theenergiesofdlevelsaffectedbymany
complicatedfactors.

Terms, States and Microstates
•Energy levels described by quantum numbers.
–Principal quantum number –n
–Azimuthalquantum number –l
–Magnetic quantum number –m–Magnetic quantum number –m
l
–Spin quantum number –m
s
•Butactual conditions are complicated .
•Quantum numbers alone are not sufficient
Why ?

Configuration
•Arrangement of e
-
s in an atom or ion
–Theelectronsarefilledintheincreasing
orderofenergy–Aufbauprinciple
–Ifmorethanoneorbitalishavingsame
energy,pairingofe-willnottakeplaceenergy,pairingofe-willnottakeplace
untilalltheorbitalsareatleastsingly
occupied–Hund’srule
–Notwoelectronscanhaveallthefour
quantumnumberssame–Pauli’sexclusion
principle

Terms
•Energylevelofanatomicsystemspecifiedby
anelectronicconfiguration.
•Manytermsmayarisefromaconfiguration
•Dependsontheintrinsicnatureofcofig.•Dependsontheintrinsicnatureofcofig.
•Electronsfromfilledorbitalshaveno
contributiontoenergy–Assumption
•Partiallyfilledorbitalsdecidetheenergy
terms.

Terms … Cont
•Partially filled orbitals have two
perturbations
–Inter Electronic Repulsions–Inter Electronic Repulsions
–Spin-Orbit coupling

Inter-electronic repulsions
•Energydependsonthearrangementofe
-
•Theelectronsinpartiallyfilledorbitalsrepel
eachother.
•Repulsionsplitstheenergylevelsresultingin•Repulsionsplitstheenergylevelsresultingin
manyterms.
•Energiesofelectronswithinanorbitalitself
areslightlydifferent[PairingandExchange
energies].

Inter-electronic repulsions
RacahParameters(A,BandC)
Racahparametersweregeneratedasameanstodescribe
theeffectsofelectron-electronrepulsionwithinthemetal
complexes.
AisignoredbecauseitisroughlythesameforanymetalAisignoredbecauseitisroughlythesameforanymetal
center.
Bisgenerallyapproximatedasbeing4C.

Inter-electronic repulsions
WhatBrepresentsisanapproximationofthe
bondstrengthbetweentheligandandmetal.
Comparisonsbetween tabulatedfree
ionBandBofacoordinationcomplexiscalledthe
nephelauxeticratio(theeffectofreducingnephelauxeticratio(theeffectofreducing
electron-electronrepulsionvialigands).
Thiseffectiswhatgivesrisetothenephelauxetic
seriesofligands.

NephelauxeticEffect
•Normallytheelectronrepulsionisfoundtobeweaker
incomplexesthaninfreeionandthismeansthe
valueofBforthecomplexislessthanforafreeion.
•Thisisduetothedelocalizationoftheelectronover
theligandsawayfromthemetalwhichseparates
themandhencereducesrepulsion.themandhencereducesrepulsion.
•ThereductionofBfromitsfreeionisnormally
reportedintermsofnephelauxeticeffetβ
β = B'complex
Bfreeion
•Whereβisthenephelauxeticparameterandreferto
theelectroncloudexpansion.

Nephelauxeticseries
•Thevaluesofβdependontheligandandvaryalong
thenephelauxeticseries.Theligandscanbe
arrangedinanephelauxeticseriesasshownbelow.
Thisistheorderoftheligandsabilitytocaused
electroncloudexpansion.electroncloudexpansion.
I
-
< Br
-
< Cl
-
< CN
-
< NH
3< H
2O < F
-
•Theseriestellusthatasmallvalueofβmeansthat
thereislargemeasureofd-electrondelocalization
andagreatercovalentcharacterinthecomplex.

Reasons for e-cloud expansion
•Thiselectroncloudexpansioneffectmayoccurfor
one(orboth)oftworeasons.
–Oneisthattheeffectivepositivechargeonthemetalhas
decreased.Becausethepositivechargeofthemetalis
reducedbyanynegativechargeontheligands,thed-reducedbyanynegativechargeontheligands,thed-
orbitalscanexpandslightly.
–Thesecondistheactofoverlappingwithligandorbitals
andformingcovalentbondsincreasesorbitalsize,
becausetheresultingmolecularorbitalisformedfrom
twoatomicorbitals

Jorgensen Relation
•We know that
•C.K.Jogensenderived a relationship for βas
(1-β) = h.k
B
B



where h-is ligandparameter
k-is metal ion parameter
β* = β–βh.k

Spin-Orbit coupling
•Responsibleforfinestructureof
spectrum
•e
-
hasbothspinandorbitangular
momentsandassociatedmagneticmomentsandassociatedmagnetic
moments.
•Thesemagneticmomentsinteract
weaklytosplittheenergylevels.

Spin-Orbit coupling
•Microstatescanbevisualizedthrough
thevectormodeloftheatom.The
vectormodelassociatesangular
momentumwithenergy.momentumwithenergy.
•Eachelectronhasanorbitalangular
momentumlandaspinangular
momentums.

Thesingleelectronorbitalangularmomentuml(and
hencethetotalorbitalangularmomentumL)canonly
havecertainorientationsquantization.

•Thetotalorbital
angularmomentum
Lofagroupof
electronsinanatom
isgivenbyavector
sumoftheindividualsumoftheindividual
orbital angular
momental.

Spin-orbit coupling / L-S coupling
i) Russel-Saunders for
light atoms:
J = L + S, L + S –1, …, |L –S|
L = l
1+ l
2, l
1+ l
2–1, …, |l
1-l
2|
S = s
1+ s
2, s
1+ s
2–1, …, |s
1–s
2|
-Couple all individual orbital angular
momental to give a resultant total
orbital angular momentum L. (L = Ʃ l
i)
-Couple all individual spin angular
momentas to give a resultant total
spin angular momentum S. (S = Ʃ s)spin angular momentum S. (S = Ʃ s
i)
-Finally couple L and S to give the
total angular momentum J for the
entire atom.
Russel-Saunders
couplingworks
wellforthelight
elementsupto
bromine.

Spin-orbit coupling / L-S coupling
•The extent to which L and S are coupling is
called “Spin-Orbit Coupling constant”
•The perturbation created by L-S coupling is

sl.
Thisvalueisfor
singleelectronofa sl.
singleelectronofa
configurationand
alwayspositive

Spin-orbit coupling / L-S coupling
•For convenience, a parameter characteristic
of a term is used.
•L-S coupling constant for a term is
•The perturbation of energy of a term is

sl.•The perturbation of energy of a term issl.
s.2




•The valueispositiveforlessthanhalf
filledandnegativeiftheorbitalisgreater
thanhalffilled.

L-S Coupling continued
•Each term is split in to states by L-S coupling
specified by J values, which differing by unity.
•Each L value will have (2L+1) M
Lcomponents.
•Each S value will have (2S+1) Mcomponents.•Each S value will have (2S+1) M
Scomponents.
•So any term will have a degeneracy of
(2S+1).(2L+1)

L-S coupling in a p
2
system
Let us consider p
2
configuration
Maximum Lvalue possible is 2
Maximum Svalue possible is 0
So possible Jvalue is 2
Degeneracy of this state is
((2 x 2)+1) x ((2 x 0)+1) = 5
1
D
(9)
J=2
(9)
((2 x 2)+1) x ((2 x 0)+1) = 5
Next maximum Lvalue possible is 1
For this L value maximum Svalue
possible is 1
Possible Jvalues are 2, 1, 0
Degeneracy of this state is
((2 x 1)+1) x ((2 x 1)+1) = 9
3
P
(9)
J=2
(5)
J=1
(3)
J=0
(1)

λ

L-S coupling
•Each L and S combination is having a particular energy.
•Total angular momentum quantum number J
J = |L+S|, |L+S-1|, |L+S-2|,……|L-S|
•J values are of unit difference.
 )1()1()1(
2
 SSLLJJE
J

•J values are of unit difference.
•The energy gap between any two successive J values is
•Forlessthanhalffilled,lowestvalueofJ,|L-S|hasthe
lowestenergy.(Normalmultiplet)
•FormorethanhalffilledhighestvalueofJ|L+S|hasthe
lowestenergy(Invertedmultiplet)
)1(
1, 
 JE
JJ 

Normal and Inverted Multiplets
Normal Multiplet
Inverted Multiplet
Normal Multiplet
Inverted Multiplet

j-j coupling
•Coupleindividualorbitallandspinsangular
momentafirsttothecompleteelectronangular
momentumj.(j=l+s)
•Couplealljtogivethetotalangularmomentum
J.(J=j)J.(J=j)
•j-jcouplingismuchmorecomplicatedtotreat,
butshouldbeusedforelementsheavierthan
bromine.
•For4dand5dseriesofions.

IER Vs SOC
•BothIERandSOCareoperating
simultaneously.
•Theirrelativemagnitudesareimportant.
•IERisveryhighthanSOC.•IERisveryhighthanSOC.
•SotheIERcausesthesplittingfirst,then
splittingbySOC.
•Resultinglevelsmaybefurthersplitby
magneticfield.

Tackling the Multi-ElectronProblem
Start by taking a stepback
•first we must treat the V
3+
‘free ion’ with no ligands in a spherically
symmetricenvironment
•since V
3+
is d
2
, we must consider e

-e

interactions, spin-spin
interactions, and spin-orbitalinteractions
Define a fewterms
•microstate –a specific valence electron configuration for amulti-•microstate –a specific valence electron configuration for amulti-
electron freeion
•atomic state –a collection of microstates with the sameenergy
•term symbol –the label for a free ion atomicstate
2S+1
L
L term symbollabel
0 S
1 P
2 D
3 F
4 G
“spin
multiplicity”
i! 10!
j!ij!2!10 2!
 45# microstates
#e

#spaces

Multi-Electron QuantumNumbers
When we learn about atoms and electron configurations, we learn
the one-electron quantum numbers (n, l, m
l,m
s)
Multi-electron ions need multi-electron quantumnumbers
•L gives the total orbital angular momentum of an atomic state
(equal to the maximum value ofM
L)
•M
L is the z-component of the orbital angular momentum of amicrostate
•S gives the total spin angular momentum of an atomic state
(equal to the maximum value of M
S (for a given Lvalue)
•M
S is the z-component of the spin angular momentum of amicrostate

Spin-OrbitCoupling
So far we’ve considered only e

-e

(orbital angular momentum) and
spin-spin (spin angular momentum) interactions.
Orbitals and spins can also interact giving rise to spin-orbit
coupling
•J is the total angularmomentum
So for the
3
F ground state of a d
2
free ion, wehaveSo for the
3
F ground state of a d
2
free ion, wehave
To determine the lowest energy spin-orbit coupledstate:
1.For less than half-filled shells, the lowest J is the lowestenergy
2.For more than half-filled shells, the highest J is the lowestenergy
3.For half-filled shells, only one J ispossible
J L S 4
L S 2
so J 4, 3,2
So the
3
F ground state
electron configuration of
a d
2
free ion splits into
3
F4,
3
F3, and
3
F2.

Number of microstates for a system
)!2(!
!2
xyx
y
N


Where
N= number of microstates possible
y –number of orbitals
X-number of electrons

Number of microstates –p
1
system
+1 0 -1 y –number of orbitals -6
x -number of electrons –1
))!16.(2!.(1
)!6.(2

N
))!16.(2!.(1 
N
))5.4.3.2.1(2.(1
)6.5.4.3.2.1.(2
N
N = 6

Number of microstates –p
2
system
y –number of orbitals -6
x -number of electrons –2
)!6.(2
N
))!26.(2!.(2 
N
))4.3.2.1(2).(2.1(
)6.5.4.3.2.1.(2
N
N = 15

Term Symbols for p
2
•Maximum L value possible is 2
–Possible M
Lvalues are -L, -(L+1), …, 0 , …, +(L-1), +L
–i.e. -2 , -1 , 0 , +1 , +2
•Maximum S value possible is : 0
–Possible M
svalue is 0
•Considering all possible combinations
M
L +2 +1 0 -1 -2
Ms 0 0 0 0 0
Term
1
D

Term Symbols for p
2
•Next maximum L value possible is 1
–Possible M
Lvalues are -L, -(L+1), …, 0 , …, +(L-1), +L
–i.e. -1 , 0 , +1
•Maximum S value possible is : 1
–Possible M
svalue are +1 , 0 , -1
•Considering all possible combinations
M
S +1 0 -1
M
L+10 -1+10 -1+10 -1
Term
3
P

Term Symbols for p
2
•Next L value possible is 0
–Possible M
Lvalue is 0
•The only S value possible is : 0
–Possible M
svalue is 0
The term is
1
S
M
S 0
M
L 0
Term
1
S

Term Symbols for d
2
l
1= 2; l
2= 2
L = |l
1+l
2|, |l
1+l
2-1|, |l
1+l
2-2|…,0,…, |l
1-l
2|
So the possible values for L are
L = 4, 3, 2, 1, 0L = 4, 3, 2, 1, 0
s
1= ½ ; s
2= ½
So the possible values for S are
S = 1, 0

Microstates of d
2
Maximum L value is 4
So the possible M
Lvalues are +4, +3, +2, +1, 0, -1, -2, -3, -4
Maximum S value possible is 0
So Mcan be only 0
M
L+4+3+2+10 -1-2-3-4
M
S0 0 0 0 0 0 0 0 0
Term
1
G (9)
So M
scan be only 0

Microstates of d
2
Next maximum L value is 3
So the possible M
Lvalues are +3, +2, +1, 0, -1, -2, -3
Maximum S value possible is 1
So Mcan be +1, 0, -1So M
scan be +1, 0, -1
M
L +3 +2 +1 0 -1 -2 -3
M
S
+10-1+10-1+10-1+10-1+10-1+10-1+10-1
Term
3
F (21)

Microstates of d
2
Next maximum L value is 2
So the possible M
Lvalues are +2, +1, 0, -1, -2
Maximum S value possible is 1
So Mcan be +1, 0, -1So M
scan be +1, 0, -1
M
L +2 +1 0 -1 -2
M
S 0 0 0 0 0
Term
1
D (5)

Microstates of d
2
•Next maximum L value possible is 1
–Possible M
Lvalues are +1 , 0 , -1
•Maximum S value possible is : 1
–Possible M
svalue are +1 , 0 , -1
•Considering all possible combinations
M
S +1 0 -1
M
L+10 -1+10 -1+10 -1
Term 3
P (9)

Microstates of p
2
•Next L value possible is 0
–Possible M
Lvalue is 0
•The only S value possible is : 0
–Possible M
svalue is 0
The term is
1
S
M
S 0
M
L 0
Term
1
S (1)

Inter-electronic repulsions

The Crystal Field Splitting of
Russell-Saunders termsin weak o
hcrystal fields
Russell-Saunders Terms Crystal Field Components
S(1) A
1g
P(3) T
1g
D(5) E
g+T
2gD(5) E
g+T
2g
F(7) A
2g+ T
1g+ T
2g
G(9) A
1g+E
g+ T
1g+T
2g
H(11) E
g+ T
1g+ T
1g+ T
2g
I(13) A
1g+ A
2g+ E
g+ T
1g+T
2g+T
2g

MullikenSymbols
MullikenSymbol Explanation
A Non-degenerate orbital; symmetric to principal C
n
B Non-degenerate orbital; unsymmetricto principal C
n
E Doubly degenerate orbital
T Triply degenerate orbital
(subscript) g Symmetric with respect to center of inversion(subscript) g Symmetric with respect to center of inversion
(subscript) u Unsymmetricwith respect to center of inversion
(subscript) 1 Symmetric with respect to C
2perp. to principal C
n
(subscript) 2 Unsymmetricwith respect to C
2perp. to principal C
n
(superscript) 'Symmetric with respect to σ
h
(superscript) " Unsymmetricwith respect to σ
h

MullikenSymbols

•Examinethecorrelationdiagramforad
2
configurationinanoctahedralligandfield.
–Farleft(absenceofligandfield)–thefree-ion
terms.Onthisside,theligandfieldhasvery
littleinfluence.
Correlation Diagrams
Relating Electron Spectra to LigandField Splitting
littleinfluence.
–Farright(strongligandfield)–thestatesare
largelydeterminedbytheligandfield.
•Inrealcompounds,thesituationissomewherein
themiddle.
•Correlatingthestatesonbothsidesisdonein
accordancewiththesocalled“non-crossingrule”.

OrgelDiagram
•Usedforinterpretationofelectronicspectra
ofmetalioncomplexes.
•Gotbyplottingtheenergiesofsplitlevelsof
atermbyincreasingligandfieldstrengthatermbyincreasingligandfieldstrength
•Onlyapplicableforweakfieldcases.
•Canpredictonlyspin-allowedtransitions.
•Transitionsareassumedtooccurfromthe
lowestenergylevel.

OrgelDiagram
Energy of term
10Dq
2
D
Energy of term

OrgelDiagram

d
2
o
h
d
8
o
h

Selection Rules for Electronic Spectra
•Whenthemoleculeabsorbselectromagnetic
radiation,itmaybeduetointeractionof
–electricaldipoleorquadruplewiththeelectrical
fieldofemr–Electricaldipoletransitionsfieldofemr–Electricaldipoletransitions
–themagneticdipoleofthemoleculewiththe
magneticfieldofemr–Magneticdipole
transitions
Electricaldipole>>Magneticdipole>Electricalquadruple

Transition Moment Integral

  dM
es
ex
gs
ex

  dM
es
ey
gs
ey

  dM
esgs

  dM
es
ez
gs
ez
•Probability of any transition is proportional to M
i
2
•Allowed transition M
i≠ 0
•Forbidden transition M
i= 0

Transition Moment Integral
gs es gs es
i o i o s s
M d d      
soe
 
•Foranyallowedelectronictransition,theM
ivalueshouldbe
non-zero.
•soeitherfirstintegralorsecondoneshouldbezeroifM
iis
zero.
•Thedipolemomentoperatordealswiththedisplacementof
atomsandassociateddipolemomentchanges,sothespin
partcanbeisolated.

Odds and evens
Geradeor Ungerade

1 3 3
1 3
2
1 1
1 1 1 1 2
3 3 3 3 3 3
x
x dx


 
      
      
     
     
 


1 4 4
1 4
3
1 1
1 1
0
4 4 4
x
x dx


 
   
    
 
  
 

( ) ( )f x f x 
( ) ( )
( ) ( )
f x f x
f x f x
 
  

f
1 operator
f
2 Product
x
5
x
3
x
5
x
13
Zero
x
5
x
3
x
2
x
10
Non-zero
x
2
x
3
x
5
x
10
Non-zero
x
2
x
3
x
2
x
7
Zero
 productfunction dx



ψ
e
gs
µ ψ
e
es
Product Mi
Odd Odd Odd Odd Zero
Odd Odd Even Even Non-zero
Even Odd Odd Odd Non-zero
Even Odd Even Odd Zero

p
x-orbital Ungerade(u)
d
xy-orbital -gerade(g)

•Alltransitionswithinthed-shell,suchas
3A
2g→
3T
2gare
Laporteforbidden,becausetheyareg→g.
•Theintensityofthed-dtransitionsthatgived-block
metalionstheircolorsarenotveryintense.
The LaporteSelection Rule
metalionstheircolorsarenotveryintense.
•Chargetransferbandsfrequentlyinvolvep→dord→p
transitions,andsoareLaporte-allowedandtherefore
veryintense.
.

The Selection rules for electronictransitions
Charge-transfer band –Laporte and spin allowed –veryintense
[Ni(H
2O)
6]
2+
a
3
A
2g →
1
E
g Laporte and spin forbidden –veryweak
a, b, and c,Laporte
forbidden, spin
allowed, inter-
mediateintensity
b
3A
2g→
3
T
2g
c
mediateintensity

Why the‘forbidden’ transitions occur?
The orbital selection rule or the Laporteselection
rule may be relaxed by any one of the following
Departurefromcubicsymmetry
d-pmixing
Vibroniccoupling

Departure from cubic symmetry
•Theorbitalselectionruleisstrictlyfollowedonlyin
perfectcubicsymmetries(O
handcubic)
•Ifthesymmetryislowered,i.e.centreofsymmetryis
removedeitherpermanentlyortemporarily,thend-d
transitionsmaybecomeallowed.transitionsmaybecomeallowed.
•T
dcomplexesarehavingmoreintensecolors,since
thetransitionsareallowedduetotheabsenceof
centerofsymmetry.
•Thismechanismmaynotgreatlyrelaxtheselection
rule,butanusefulpathwayfortransition.

Mixing of states
•Thestatesinacomplexareneverpure.
•Whentwostatesareenergeticallytooclose
theymaybemixedbythermalvibrations
itself.itself.
•Someofthesymmetrypropertiesof
neighboringstatesbecomemixed.
•Thismakesthetransitionspartiallyallowed
whicharenormallyforbidden.

Mixing of states: Comparison of [Ni(H
2O)
6]
2+ and[Ni(en)
3]
2+:
[Ni(H
2O)
6]
2+
[Ni(en)]
2+
3A
2g 2g→
3
T(F)
The spin-forbidden
3
A
2g →
1
E
g is close to thespin-allowed
3
A
2g →
3
T
2g(F) and ‘borrows’ intensity by mixing ofstates
The spin-forbidden
3
A
2g →
1
E
g is not close
to any spin allowed band and is veryweak
3A
2g→
1
E
g
Note:Thetwospectraare
drawnonthesamegraph
foreaseofcomparison.
[Ni(en)
3]
2+
3A
2g→
3
T
2g

•Electronictransitionsarealwaysverybroad
becausetheyarecoupledtovibrations.
•Thetransitionsarethusfromgroundstates
plusseveralvibrationalstatestoexcitedstates
plusseveralvibrationalstates.
•sothe‘electronic’bandisactuallyacomposite
ofelectronicplusvibrationaltransitions

VibronicCoupling
•The vibrational
statesmaybeof
oppositeparityto
the electronic
g
u
g
the electronic
states,andsohelp
overcome the
Laporteselection
rule.
g
g

Symmetry of vibrational states, and their
coupling to electronicstates:
observed
spectrum
E-υ
1
E-υ
2
E-υ
3
1
E + υ ’
E
E +υ
2’
E +υ
3’
T
1u
symmetry
vibration
A
1g
symmetry
vibration
(symbols have same meaningfor
vibrations: A =non-degenerate,
T = triply degenerate, g =gerade,
u = ungerade,etc.)
The band one sees inthe
UV-visible spectrum isthe
sum of bands due to transitions
to coupled electronic (E)and
vibrational energy levels (υ
1, υ
2,υ
3)

T
d
vsO
h
•Atetrahedronhasnocenterofsymmetry,
andsoorbitalsinsuchsymmetrycannot
begerade.Hencethed-levelsina
tetrahedralcomplexareeandt
2.
•ThislargelyovercomestheLaporte•ThislargelyovercomestheLaporte
selectionrules,sothat tetrahedral
complexestendtobeveryintenseincolor.
•DissolvingCoCl
2inwaterproducesa
palepinksolutionof[Co(H
2O)
6]
2+,butin
alcoholforms,whichisatetrahedral
[CoCl
4]
2-
havingveryintensebluecolor.

[Co(H
2O)
6]
2+
and [CoCl
4]
2-
[CoCl
4]
2-
The spectra at left
show the very intense
d-d bands in the blue
tetrahedral complex
[CoCl
4]
2-
, as compared
with the much weaker
[Co(H
2O)
6]
2+
with the much weaker
band in the pink
octahedral complex
[Co(H
2O)
6]
2+
.This
differencearises
becausetheTcom-d
plex has no centerof
symmetry, helping to
overcome the g→g
Laporte selectionrule.

Shape of Electronic bands
•Variation of 10Dq
•Lower symmetry components
•Vibrationalstructure & F.C Principle
•Jahn-Teller distortion
•Spin-Orbit coupling

Variation of 10Dq
•TheDqvalueisverysensitivetotheM-L
bonddistance.
•WhenthecomplexmoleculevibratesM-L
bondlengthcontinuouslychanges,andhencebondlengthcontinuouslychanges,andhence
theDq.
•SincetransitionenergyisafunctionofDq,
thetransitionoccursoverarangeofenergy,
i.ethelinebroadens.

Variation of 10Dq
ΔΕ
C
Ex.state: C
ΔΕ
B Ex.state: B
ΔDq
Gr.state: A

Lower symmetry components
Perfect O
h
Pseudo O
h

Lower symmetry components
•Selectionrulesstrictlyobeyedinperfectcubic
symmetry.
•Whentheligandsaresubstituted,thereisan
effectiveO
hsymmetrybutnottrueO
heffectiveO
hsymmetrybutnottrueO
h
•Thismayresolvetheelectronicstates,ifthe
energygapismoretwodistinctpeakswill
appear.
•Inthecaseoflesserenergydifferencebroad
peaksduetooverlapoftwolines,mayappear.

Jahn-Teller distortion
•In1937,HermannJahnandEdwardTellerpostulated
atheoremstatingthat"stabilityanddegeneracyare
notpossiblesimultaneouslyunlessthemoleculeisa
linearone,"inregardstoitselectronicstate.
•Thisleadstoabreakindegeneracywhichstabilizes•Thisleadstoabreakindegeneracywhichstabilizes
themoleculeandbyconsequence,reducesits
symmetry.
•“Anynon-linearmolecularsysteminadegenerate
electronicstatewillbeunstableandwillundergo
distortiontoformasystemoflowersymmetryand
lowerenergy,therebyremovingthedegeneracy."

Jahn-Teller distortion

Jahn-Teller distortion
Spectra got if energies of
transitions are too close
[CuF
6]
4-
transitions are too close

Vibrationalstructure
&
Franck-Condon principle
•Duringanelectronictransition,many
vibrationaltransitionsmayalsobe
simultaneouslyactivated.
•Thisleadtomanycloselypackedvibrational•Thisleadtomanycloselypackedvibrational
peaktoappear,whichmakeabroadband.
•Undernormaltemperaturemanyvibartional
levelsarepopulated,hencevibartional
coarsestructureisverycommoninelectronic
spectra

Spin-Orbit coupling
•Generallyspin-orbitcouplingisconsideredas
asmallperturbationwhencomparedto
crystalfield.(atleastfor3dseries).
•Butnhigherelements,theL-Scouplingmay•Butnhigherelements,theL-Scouplingmay
bestronger,whichmixthelevelsofdifferent
spins.
•NowSisnotavalidquantumnumber,and
manyspin-forbiddenbandsappearleadingto
broaderabsorptions.

•Charge-transferbandarisefromthemovement
of electronsbetweenorbitalsthatare
predominantlyligandincharacterandorbitals
thatarepredominantlymetalincharacter.
Charge-Transfer Bands
•Thesetransitionsareidentifiedbytheirhigh
intensityandthesensitivityoftheirenergiesto
solventpolarity.
•Absorptionforchargetransfertransitionis
moreintensethand–dtransitions.

d-d=20Lmol
-1cm
-1orless,Ɛ
charge-transfer=50,000Lmol
-1cm
-1or
greater)

Charge-Transfer transition is classifiedinto:
Ligand-to-Metal Charge-Transfertransition.
(LMCT transition)
Ifthemigrationofthe electronis from
theligandtothe metal.
Metal-to-Ligand Charge-Transfertransition.
(MLCT transition)
Ifthemigrationofthe electronisfrom
themetaltothe ligand.

•Ligands possess σ, σ*, π, π*, and nonbonding (n) molecularorbitals.
•Iftheligandmolecularorbitalsarefull,chargetransfermayoccur
fromtheligandmolecularorbitalstotheemptyorpartiallyfilledmetal
d-orbitals.
•LMCTtransitionsresultinintensebands.Forbiddend-dtransitions
mayalsotakeplacegivingrisetoweakabsorptions.
• Ligand to metal charge transfer results in the reduction of themetal.

MLCT
•Ifthemetalisinalowoxidationstate(electronrich)and
theligandpossesseslow-lyingemptyorbitals(e.g.,COor
CN−).
•LMCTtransitionsarecommonforcoordination
compounds having π-acceptorligands.
•Upontheabsorptionoflight,electronsinthemetal•Upontheabsorptionoflight,electronsinthemetal
orbitals are excited to the ligand π*orbitals.
•MLCT transitions result in intense bands. Forbidden d –d
transitions may alsooccur.
•Thistransitionresultsintheoxidationofthemetal.

Metal-to-Ligand Charge-
Transfer transition.

Effect of Solvent Polarity on CTSpectra
You are preparing a sample for a UV/Vis experiment and youdecide
to use a polar solvent. Is a shift in wavelength observedwhen:
Both the ground state and the excited state are neutral.
The excited state is polar, but the ground state isneutralThe excited state is polar, but the ground state isneutral
The ground state and excited state ispolar
The ground state is polar and the excited state isneutral

The excited state is polar, but the
ground state isneutral

The ground state and excited state
is polar

The ground state is polar and the
excited state isneutral

The MO view of electronic transitions inan
octahedralcomplex
t*
1u
a1g*
4p
t
2g→t
1u*
M→L Chargetransfer
Laporte and spin
allowed
t
2g→e
g
d→d transition
Laporteforbidden
Spin-allowed or
forbidden
eg*
t
2g
4s
eg
a
1g
t
1u
3d
t
1u→t
2g
L→M Chargetransfer
Laporte andspin
allowed
The e
g level inCFT
is an e
g* inMO
In CFT weconsider
only the e
g and t
2g
levels, which are a
portion of the over-
all MOdiagram
σ-donor orbitals
of sixligands