ELECTRICAL MEASUREMENTS AND INSTRUMENTATION
UNIT –II: Analog Wattmetersand Power Factor Meters
M.SURESH
M.Tech(NITW)., (Ph.D)
Associate Professor
EEE Department
RISE Krishna SaiPrakasamGroup of Institutions
Ongole, PrakasamDt. AP
Content
•Electrodynamometer type wattmeter (LPF and UPF),
•Power factor meters: Dynamometer and M.I type
•(Single phase and Three phase),
•Construction, Theory, Torque equation,
•Advantages and Disadvantages
•Numerical Problems.
M.SURESH, EEE Dept
Torque Equation of Electrodynamometer-type Instruments2
M.SURESH, EEE Dept
•Let, i
1= instantaneous value of current in the fixed coils, (A)
•i
2= instantaneous value of current in the moving coils, (A)
•L
1= self-inductance of fixed coils, (H)
•L
2= self-inductance of moving coil, (H)
•M = mutual inductance between fixed and moving coils (H)
•Flux linkage of Coil 1, ψ
1= L
1i
1+ Mi
2
•Flux linkage of Coil 2, ψ
2= L
2i
2+ Mi
1
•Electrical input energy,
Torque Equation of Electrodynamometer-type Instruments (Cont…)
•From the principle of conservation of energy,
•Total electrical input energy = Change in energy in energy stored +
mechanical energy
•The mechanical energy can be obtained by subtracting Eq. (2) from Eq. (1).
•Therefore, mechanical energy
•Now,theself-inductancesL
1andL
2areconstantsand,therefore,dL
1and
dL
2bothareequaltozero.Hence,mechanicalenergy=i
1i
2Dm
•SupposeT
iistheinstantaneousdeflectingtorqueanddθisthechangein
deflection,then,Mechanicalenergy=workdone=T
idθ
•Thuswehave
M.SURESH, EEE Dept
M.SURESH, EEE Dept
M.SURESH, EEE Dept
Torque Equation of Electrodynamometer-type Instruments (Cont…)
M.SURESH, EEE Dept
Torque Equation of Electrodynamometer-type Instruments (Cont…)
M.SURESH, EEE Dept
Torque Equation of Electrodynamometer-type Instruments (Cont…)
Torque Equation of Electrodynamometer-type Instruments
•Let, i
f= current in the fixed coil
i
m= current in the moving coil
i= load current
v = load voltage
T
in= instantaneous value of the deflecting torque
p = instantaneous power
•T
inαi
fx i
m
•But since i
fαI, i
mαv
•T
inαv x I αp
•Thus,theinstantaneousvalueofthedeflectingtorqueisproportionaltothe
instantaneouspower.
•Owingtotheinertiaofthemovingsystem,thepointerreadstheaverage
power.
•Indccircuits,thepowerisgivenbytheproductofvoltageandcurrent,and
hencethetorqueisdirectlyproportionaltothepower.
•Thus,theinstrumentindicatesthepower.
M.SURESH, EEE Dept
•Let, i
f = current in the fixed coil
•i
m= current in the moving coil
•i= load current
•v = load voltage
•T
in= instantaneous value of the deflecting torque
•p = instantaneous power
•T
inαi
fi
m
•But since i
fαiand i
mαv and T
inαvi αp
•Thus,theinstantaneousvalueofthedeflectingtorqueisproportionaltothe
•instantaneouspower.Owingtotheinertiaofthemovingsystem,the
pointerreadstheaveragepower.Indccircuits,thepowerisgivenbythe
productofvoltageandcurrent,andhencethetorqueisdirectly
proportionaltothepower.Thus,theinstrumentindicatesthepower.
•Forac,theinstrumentindicatestheaveragepower.Thiscanbeprovedas
follows:T
inαvi
M.SURESH, EEE Dept
Torque Equation of Electrodynamometer-type Instruments
•Average deflecting torque αAverage power
•Let, v = V
msin wt and I = I
msin (wt-Ф)
•Average deflecting torque αAverage value of V
msin wt ×I
msin (wt-Ф)
αVI cosФ
•If T
dbe the average torque, then T
dαVI cosФ
αTrue power = k P
•where P is the true power and k is the constant.
•For spring control T
C= k
sθ
1
•whereT
Cisthecontroltorque,
•k
sisthespringconstantand
•θ
1istheangleofdeflectionofthepointer.
•Forsteadydeflection,
•T
C=T
d
•k
sθ
1=kP
•k
sθ
1=(K/k
1)xP
•θ
1αP
•Hence,incaseofacalsothedeflectionisproportionaltothetruepowerinthe
circuit.
•Thescaleoftheelectrodynamometerwattmeteristhereforeuniform.
M.SURESH, EEE Dept
Torque Equation of Electrodynamometer-type Instruments
Power Measurement in DC Circuits
•Electricpower(P)consumedbyaload(R)suppliedfromadcpower
supply(V
S)istheproductofthevoltageacrosstheload(V
R)andthe
currentflowingthroughtheload(I
R):
•Thus,powermeasurementinadccircuitcanbecarriedoutusinga
voltmeter(V)andanammeter(A)usinganyoneofthearrangements
showninFig.(1).
Fig.(1) Two arrangements for power measurement in dc circuits
M.SURESH, EEE Dept
Power Measurement in DC Circuits (Cont..)
•Powerindccircuitscanalsobemeasuredbywattmeter.
•Wattmetercangivedirectindicationofpowerandthereisnoneedto
multiplytworeadingsasinthecasewhenammeterandvoltmeterisused.
•Thetypeofwattmetermostcommonlyusedforsuchpowermeasurement
isthedynamometer.Itisbuiltby(1)twofixedcoils,connectedinseries
andpositionedcoaxiallywithspacebetweenthem,and(2)amovingcoil,
placedbetweenthefixedcoilsandfittedwithapointer.
•Suchaconstructionforadynamometer-typewattmeterisshowninFig(2).
Fig(2). Basic construction of dynamometer-type wattmeter
M.SURESH, EEE Dept
•Itcanbeshownthatthetorqueproducedinthedynamometeris
proportionaltotheproductofthecurrentflowingthroughthefixedcoils
timesthatthroughthemovingcoil.
•Thefixedcoils,generallyreferredtoascurrentcoils,carrytheloadcurrent
whilethemovingcoil,generallyreferredtoasvoltagecoil,carriesa
currentthatisproportional,viathemultiplierresistorRV,tothevoltage
acrosstheloadresistorR.
•Asaconsequence,thedeflectionofthemovingcoilisproportionaltothe
powerconsumedbytheload.
•Atypicalconnectionofsuchawattmeterforpowermeasurementindc
circuitisshowninFig.(3).
Fig.(3) Connection of dynamometer-type wattmeter for power measurement in dc circuit
M.SURESH, EEE Dept
Electrodynamometer-type Wattmeter
•Construction of Electrodynamometer-type Wattmeter:
•Schematicdiagramdisplayingthebasicconstructionalfeaturesofa
electrodynamometertypewattmeterisshowninFig(3).
Fig.(3) Schematic of electrodynamometer-type wattmeter
M.SURESH, EEE Dept
Operation of Electrodynamometer-type Wattmeter
•V = voltage to be measured (rms) I = current to be measured (rms)
•i
P= voltage (pressure) coil instantaneous current
•i
C= current coil instantaneous current
•R
V= external resistance connected with pressure coil
•R
P = resistance of pressure coil circuit (PC resistance + RV)
•M = mutual inductance between current coil and pressure coil
•θ = angle of deflection of the moving system
•ω = angular frequency of supply in radians per second
•φ = phase-angle lag of current I with respect to voltage V
Fig.(5) Operational circuit of
electrodynamometer-type
wattmeter
M.SURESH, EEE Dept
•InstantaneoustorqueoftheelectrodynamometerwattmetershowninFig.(5)is
givenbyT
i=i
pi
c(dM/dθ)
•Instantaneous value of voltage across the pressure-coil circuit is vp=
•Ifthepressurecoilresistancecanbeassumedtobeveryhigh,thewholepressure
coilcanbeassumedtobebehavinglikearesistanceonly.Thecurrenti
Pinthe
pressurecoilthus,canbeassumedtoinphasewiththevoltagev
P,andits
instantaneousvalueis
•whereI
P=V/R
Pisthermsvalueofcurrentinpressurecoil.
•Assumingthatthepressure-coilresistanceissufficientlyhightopreventbranching
outofanyportionofthesupplycurrenttowardsthepressurecoil,thecurrentcoil
currentcanbewrittenas
M.SURESH, EEE Dept
Operation of Electrodynamometer-type Wattmeter (Cont..)
Operation of Electrodynamometer-type Wattmeter (Cont..)
➢WithaspringconstantK,thecontrollingtorqueprovidedbythespringforafinal
steady-statedeflectionofθisgivenbyT
C=Kθ
➢Understeady-statecondition,theaveragedeflectingtorquewillbebalancedbythe
controllingtorqueprovidedbythespring.Thus,atbalancedconditionT
C=T
d
➢where, P is the power to be measured and K
1= 1/KR
Pis a constant.
➢Steady-state deflection θ is thus found to be an indication of the power P to be
Measured.
M.SURESH, EEE Dept
Errors in Electrodynamometer-type Wattmeter
❖Error due to Pressure-Coil Inductance
❖Compensation for Pressure Coil Inductance
❖Error due to Pressure Coil Capacitance
❖Error due to Connection
❖Eddy-current Errors
❖Stray Magnetic Field Errors
❖Error Caused by Vibration of the Moving System
❖Temperature Errors
M.SURESH, EEE Dept
Errors in Electrodynamometer-type Wattmeter (Cont...)
1. Error due to Pressure-Coil Inductance
•Itwasassumedduringthediscussionssofarthatthepressurecoilcircuitispurely
resistive.
•Inreality,however,thepressurecoilwillhavecertaininductancealongwith
resistance.
•Thiswillintroduceerrorsinmeasurementunlessnecessarycompensationsare
takencareof.
•Tohaveanestimateofsucherror,letusconsiderthefollowing:
•V = voltage applied to the pressure coil circuit (rms)
•I = current in the current coil circuit (rms)
•I
P= current in the voltage (pressure) coil circuit (rms)
•r
P= resistance of pressure coil only
•L = inductance of pressure coil
•R
V= external resistance connected with pressure coil
•R
P= resistance of pressure coil circuit (PC resistance + RV)
•Z
P= impedance of pressure coil circuit
•M = mutual inductance between current coil and pressure coil
•ω = angular frequency of supply in radian per second
•φ = phase-angle lag of current I with respect to voltage V
M.SURESH, EEE Dept
Relating to R
P= Z
Pcosα in the pressure coil circuit, the wattmeter deflection can be
rewritten as VI dM
Intheabsenceofinductance,Z
P=R
Pandα=0;wattmeterinthatcasewillreadtrue
power,givenby,
Taking the ratio of true power indication to actual wattmeter reading, we get
True power indication can thus be obtained from the actual wattmeter reading using
the correction factor CF as True power indication = CF X Actual wattmeter reading
For leading power factor loads, however, the wattmeter phasordiagram will be as
shown in Fig.(7)
Fig.(7) Wattmeter phasordiagram with pressure coil inductance during leading load
M.SURESH, EEE Dept
Errors in Electrodynamometer-type Wattmeter (Cont...)
Errors in Electrodynamometer-type Wattmeter (Cont...)
2.CompensationforPressureCoilInductance
•Awattmetercanbecompensatedforpressurecoilinductanceby
connectingapresetvalueofcapacitanceacrossacertainportionofthe
externalresistanceconnectedinserieswiththepressurecoil,asshownin
Fig(8).
Fig(8). Compensation for pressure coil inductance
M.SURESH, EEE Dept
M.SURESH, EEE Dept
Errors in Electrodynamometer-type Wattmeter (Cont...)
Errors in Electrodynamometer-type Wattmeter (Cont...)
3. Error due to Pressure Coil Capacitance
•Thevoltageorpressurecoilcircuitmayhaveinherentcapacitancein
additiontoinductance.
•Thiscapacitanceeffectismainlyduetointer-turncapacitanceofthe
windingandexternalseriesresistance.
•Theeffectofstraycapacitanceofthepressurecoilisoppositetothatdue
toinductance.
•Therefore,thewattmeterreadslowonlaggingpowerfactorsandhighon
leadingpowerfactorsoftheload.
•Actualreadingofthewattmeter,thus,onceagainneedstobecorrected
bythecorrespondingcorrectionfactorstoobtainthetruereading.
•Theeffectofcapacitance(aswellasinductance)varieswithvariable
frequencyofthesupply.
M.SURESH, EEE Dept
Errors in Electrodynamometer-type Wattmeter (Cont...)
4. Error due to Connection:
•Therearetwoalternatemethodsofconnectionofwattmetertothecircuit
formeasurementofpower.TheseareshowninFig(9).
•Ineitheroftheseconnectionmodes,errorsareintroducedin
measurementduepowerlossesinpressurecoilandcurrentcoil.
Fig. (9) Wattmeter connections
M.SURESH, EEE Dept
•Therewillbetwodeflectingtorques,oneactingonthecoilAandthe
otheronB.
•Thesetwocoilwindingsaresoarrangedthattheyexperiencetorquein
theoppositedirection.
•Thepointerwhichisattachedtothesetwocoilsjointly,willthusattaina
steadydeflectionwhenthesetwooppositetorquesoncoilsAandBare
equal.
•Letusconsideralaggingpowerfactorcosφoftheload.
•DeflectingtorqueonthecoilA,
•where θ = angular deflection from the reference horizontal plane
•M = mutual inductance between the fixed coils and coil A
M.SURESH, EEE Dept
Single-Phase Dynamometer-type Power-Factor Meter
•Deflecting torque on the coil B
•At equilibrium, T
A= T
B
•Therefore, the deflection (θ) of the instrument is a measure of the power-
factor angle.
•By proper calibration, the scale can be made to show the value of the
power factor directly.
M.SURESH, EEE Dept
Single-Phase Dynamometer-type Power-Factor Meter
Three Phase Dynamometer-type Power-Factor Meter
•Construction of Three-Phase Power Factor Meter
•Thisinstrumentisnotaffectedbythevariationsinfrequency.
•Thesepowerfactormetershavethesameconstructionasthesingle-
phasepowerfactormeter.
•Themaindifferenceofconstructionbetweenthesingle-phaseandthree-
phasepowerfactoristhatthemovingcoilsC
1andC
2areat120degreesto
eachotherandthesemovingcoilsC
1andC
2areconnectedacrossthetwo
variousphasesofthesupply.
•ThestationarycoilsSC
1andSC
2areconnectedinserieswiththirdphase.
ThecurrentI
1andI
2arenotdeterminedbythephasesplittingcircuit.
M.SURESH, EEE Dept
M.SURESH, EEE Dept
Three Phase Dynamometer-type Power-Factor Meter
•Working of Three Phase Power Factor Meter
•Itsworkingissameasthesingle-phasepowerfactormeterworks.The
maindifferenceisthatthecurrentlagswith120
0
inplaceof90
0
.
•Thecurrentisinphasewiththevoltagewhentheloadpowerfactoris
unity.
•ThecurrentI
1isinphasewiththecurrentIandthecurrentI
2lagsbehind
by120
0
.
•ThetorqueactsoncoilC
1andsetsitsplaneperpendiculartothemagnetic
axesofthestationarycoilsSC
1andSC
2.
•ThetorquedoesnotactonthemovingcoilC
2.
•Whenthepowerfactoriszero,thecurrentlagswithvoltageby120
0
.
•ThecurrentI
2isinphasewiththecurrentandthecurrentI
1willbe120
0
outofphaseandthereisnotorqueonthemovingcoilC
1butitactsonC
2.
•Itwillbringitsplaneperpendiculartothecommonmagneticaxisof
SC
1andSC
2.
•Advantages
•These meters are more reliable.
•These three-phase power factor meter provides actual readings.
M.SURESH, EEE Dept
Dynamometer-type Power-Factor Meter
Moving Iron Power Factor Meter
M.SURESH, EEE Dept
Rotating Field Type MI Power Factor Meter
M.SURESH, EEE Dept
M.SURESH, EEE Dept
Rotating Field Type MI Power Factor Meter
M.SURESH, EEE Dept
Rotating Field Type MI Power Factor Meter
Alternating Field Type MI Power Factor Meter
M.SURESH, EEE Dept
M.SURESH, EEE Dept
M.SURESH, EEE Dept
Alternating Field Type MI Power Factor Meter
M.SURESH, EEE Dept
Alternating Field Type MI Power Factor Meter
Advantages
•These meters are strong and cheap.
•Their scales are up to 360 degrees.
•There are no electrical connections in the moving parts.
Disadvantages
•These instruments have so many errors.
•These instruments are not accurate.
•These instruments have hysteresis losses and eddy current losses in
their iron parts.
M.SURESH, EEE Dept
Moving Iron Power Factor Meter