EMU PHYS102 LECTURE NOTES ALL TOPICS INCLUDED

mike806776 356 views 24 slides Aug 30, 2024
Slide 1
Slide 1 of 127
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127

About This Presentation

EMU PHYS102 LECTURE NOTES


Slide Content

Page 1 of 5

Page 2 of 5

Page 3 of 5

Page 4 of 5

Page 5 of 5

Page 1 of 2

Page 2 of 2

Page 1 of 7

Page 2 of 7

Page 3 of 7

Page 4 of 7

Page 5 of 7

Page 6 of 7

Page 7 of 7

Page 1 of 8

Page 2 of 8

Page 3 of 8

Page 4 of 8

Page 5 of 8

Page 6 of 8

Page 7 of 8

Page 8 of 8

Page 1 of 5

Page 2 of 5

Page 3 of 5

Page 4 of 5

Page 5 of 5

Page 1 of 12

Page 2 of 12

Page 3 of 12

Page 4 of 12

Page 5 of 12

Page 6 of 12

Page 7 of 12

Page 8 of 12

Page 9 of 12

Page 10 of 12

Page 1 of 3

Page 2 of 3

Page 3 of 3

Page 1 of 8

Page 2 of 8

Page 3 of 8

Page 4 of 8

Page 5 of 8

Page 6 of 8

Page 7 of 8

Page 8 of 8

Page 1 of 2

Page 2 of 2

Page 7 of 12

Page 8 of 12

Page 9 of 12

Page 10 of 12

Page 11 of 12

Page 12 of 12

Page 1 of 12

Page 2 of 12

Page 3 of 12

Page 4 of 12

Page 5 of 12

Page 6 of 12

Page 1 of 3

Page 2 of 3

Page 3 of 3

Page 1 of 3

Page 2 of 3

Page 3 of 3

Page 1 of 8

Page 2 of 8

Page 3 of 8

Page 4 of 8

Page 5 of 8

Page 6 of 8

Page 7 of 8

Page 8 of 8

Page 1 of 8

Page 2 of 8

Page 5 of 8

Page 6 of 8

Page 7 of 8

Page 8 of 8

Page 1 of 6

Page 2 of 6

Page 3 of 6

Page 4 of 6

Page 5 of 6

Page 6 of 6

Page 1 of 6

Page 2 of 6

Page 3 of 6

Page 4 of 6

Page 5 of 6

Page 6 of 6

Page 1 of 11

Page 2 of 11

Page 3 of 11

Page 4 of 11

Page 5 of 11

Page 6 of 11

Page 7 of 11

Page 8 of 11

Page 9 of 11

Page 10 of 11

Page 11 of 11

Page 1 of 5

Page 2 of 5

Page 3 of 5

Page 4 of 5

Page 5 of 5

PROBLEMS ABOUT ELECTRIC FLUX – 1 
A­CASE WITH UNIFORM ELECTRIC FIELD 
Prepared by Assist.Prof.Dr. I.Sakalli
P1) An electric field with a constant magnitude
 of '
4 is applied along the x‐axis. Calculate the 
electric flux through a rectangular box, which has dimensions 9H*H., as shown in the 
figure below, 
a) Calculate the electric flux through the left‐hand surface of the box, 
b) Calculate the electric flux through the right‐hand surface of the box, 
c) Calculate the electric flux through the top surface of the box, 
d) Calculate the net electric flux through the box. 
 
 
Ans: a) ?
?LFq
?tx  b) ?
Lq
?tx  c) ?
L?  d) ?
L?   
P2) Consider a closed rectangular box resting within a horizontal electric field of magnitude 
' L 7.8 H 10
8
0/%, as shown in the figure below. Calculate the electric flux through 
a) The vertical surface, 
b) The slanted (inclined) surface, 
c) The entire surface of the box, Φ
???? 
 
Ans: a) ?
LF?.??H??
?
z?
?
/o  b) ?
L?.??H??
?
z?
?
/o  c) ?
L?   
E
r
E
r

P3) A cone with base radius “R” and height “h” is located on a horizontal table. A horizontal 
uniform electric field ',& penetrates the cone, as shown in the figure below. Determine   
a) The electric flux that enters the left‐hand side of the cone 
b) The electric flux that leaves out from the right‐hand side of the cone 
c) The net electric flux through the cone.  
 
Ans: a) ?
?L Fq?~ b) ?
Lq?~ c) ?
L?   
 
P4) A pyramid based with a square
 having a side length sv?s?I and height 30?I is located on 
a horizontal table. A horizontal uniform electric field of magnitude '
4L20/% penetrates the 
pyramid, as shown in the figure below. Determine 
 
a) The electric flux that enters the left‐hand side of the pyramid 
b) The electric flux that leaves out from the right‐hand side of the pyramid 
c) The net electric flux through the pyramid. 
 
Ans: a) ?
?L F?. ??z?
?
/o   b) ?
L ?. ??z?
?
/o   c) ?
L?   
30cm
14.1cm
0
E
E
r

E
r
PROBLEMS ABOUT ELECTRIC FLUX  
B­CASE WITH NON­UNIFORM ELECTRIC FIELD and INTRODUCTION TO THE GAUSS’S LAW 
Prepared by Assist.Prof.Dr. I.Sakalli
P1) An electric field is given by ',
&L2T
6
̂ 0/%, so it is a non‐uniform electric field in the x‐
direction. A cylinder of radius “R” and height “h” has its axis aligned with the x‐axis. Its base is at 
x=0 and its top is at x=h, as shown in the figure below. Find in terms of “R” and “h”  
a) The electric flux through the base of the cylinder 
b) The electric flux through the top of the cylinder 
c) The electric flux through its cylindrical surface 
d) The total charge inside the cylinder. 
 
Ans: a) ?
L?  b) ?
L??
?

?
  
         c) ?
!L?     d) ∑?
??L?Ƚ
?
?

?
 
 
 
 
 
 
P2)
 A closed surface with dimensions a=b=60cm, c=40cm and d=50cm is located as in the 
following figure. The electric field throughout the region is nonuniform and given by                   
',
&L:3E2U
6
;̂0/%, where U is in meters. 
a) Calculate the net electric flux through the closed surface. 
b) What net charge is enclosed by the closed surface? 
 
Ans: a) ?
L?.?? ?
?
/?  b) ∑?
??L?.??H??
???
?  
y
x
z
a
b
c
E
r
d

P3) Four closed surfaces, S 1 through S 4, (5
7@5
8?5
6?5
5 =J@ 5
6@5
5) together with the charges 
F33, 23, 3 and F 3 are sketched in the figure below. Find the electric flux through each surface. 
 
 
Ans: a) ?
?L
???
?
?
 b) ?
?L? c) ?
?L
??
?
?
 d) ?
?L? 
P4) An infinitely long line of charge having a uniform charge per unit length ? lies a distance d 
from a point O. Determine the total electric flux through the surface of a sphere of radius R 
centered at O, when  
a)
R<d   
b) R>d 
    
Ans: a) ?
?L? b) ?
?L

?
?
?
??
  
 
d
R
λ
∞−

Page 1 of 2

Page 2 of 2

Page 1 of 2

Page 2 of 2

Page 1 of 1

Page 1 of 4

Page 2 of 4

Page 3 of 4

Page 4 of 4

1

cm45
cm2
PROBLEMS ABOUT AMPERE’S LAW
Prepared by Prof.Dr. I.Sakalli
P1)

The end view of a very long straight wire carrying current + is shown below. Use Ampere’s law (by
drawing a suitable contour) and find the magnetic field vector at point P.

Ans: $,
&
?
LF

,
?
6?
̂





P2)
By using the result of P1,
a)
Find the total magnetic field vector at point A produced by two long straight wires with the same
currents + in opposite direction as shown in figure below.
b)
Find the magnetic force on the moving electron M
?
LF|M| , if it has a velocity R&LR
4
:̂ÊFG?; at
point A.



Ans:
a) $,
&
?
L

,
?
6?
̂
b) (&L

,
?
6?
R
4
|M|k̂EG?o

P3)

Two long thin parallel conducting wires, which are straight and perpendicularly directed to the
surface of the page carry steady currents +
5
and +
6
, as shown in the figure below. Determine the
magnetic field vector at
a)
Point #
b)
Point 2

Ans:
a) $,
&
?
LF73.2H10
?9
̂ 6
b) $,
&
?
LF:8.57̂E18.3̂;H10
?9
6




2

I
1
=10A I
2
=20A
x
z
y
KL
4cm 8cm
#1 #2
10cm
P4)

Two long thin, parallel and straight conducting wires carry steady currents +
5
and +
6
, as shown in
the figure below. Determine
a)
The magnetic field vector at point -
b)
The magnetic field vector at point .
c)
The force per unit length on the wire #2

Ans:
a) $,
&
?
L F1.33 H 10
?8
G? 6
b) $,
&
?
L3.88H10
?9
G? 6
c)
?&
?
L4H10
?8
̂ :0 I⁄;


P5)
A rectangular loop of wire is placed next to a straight wire as seen in the figure below. Both wires carry same
steady current with value 2.5#. What is the total magnetic force on the loop because of the magnetic field
created by the straight wire?

Ans: (&
???
L2.6H10
?:
̂ 0

Page 1 of 1