Energy Storage Materials and Devices Lecture

SudarshanNarayanan5 105 views 17 slides Jul 12, 2024
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

Energy Storage Materials and Devices


Slide Content

SEE902 – Energy Storage Materials and Devices Week 3, Lecture 5: Battery Parameters Dr. Sudarshan Narayanan Assistant Professor Dept. of Sustainable Energy Engg ., IIT Kanpur

Maximum Theoretical Specific Energy Coulombic Efficiency Current rate (C-rate) Discharge capacity Types of Discharge curves Example – Li/I 2 electrochemical system Discharge processes in complex electrode systems Contents

PARAMETERS IN BATTERY OPERATION

Maximum Theoretical Specific Energy T he e n ergy c o n tained i n a n e l ectr o ch e m i c al s y stem i s t he i n te g r al o f the vo l ta g e mu l t i p l i ed b y t h e ch a rge capac i t y , i . e ., the a mo u nt o f ch a rge av a i l a b l e . It is impo r tant to note that E v aries w ith the state of charge w hich is def i ned as the fract i on of the maximum capa c ity that is still available to be supp l ied. Energy   Edq Let us try to cal c ulate the MTSE in the fol l o w ing insertion reaction. x A  R  A x R Amount of charge (C ) :   MTSE: Wh e re W is t h e sum of the mo le c u l a r w e i g h ts o f the re a cta n ts e n g a g e d in the re a ction  

Coulombic Efficiency B a t t er i es a re d e si g n e d such t h a t the % cap a city l o ss p e r c y cle is e x treme l y l o w . In sev e ral a p pl ic a tio n s a b a t t e r y i s e x p ected to mai n t a in i ts ma j or properties ov e r ma n y d i sch a rge - ch a rge c y cl e s. C olu m bic E f ficien c y : F or any battery it is the ratio of cha r ge output to cha r ge inp u t , i.e. D ischarge capacit y / c ha r ge capaci t y . C apacity degradati o n for three differe n t values of C olu m bic efficie n ci e s If the loss in capa c ity is 0.5%, i.e., the Columbic e f ficiency is 0.995, the percentage of capa c ity loss after 50 c y cles is 22% of the orig i nal capa c ity w hich is too large.    

Current Rate (C-rate) A parameter that is o f ten used to i n d i cate the ra t e at w h i ch a bat t ery is d i scharged is t he s o -ca l l e d C -R a te. If the b a t t ery is sa i d to be d i sch a rg e d at C / n rat e , it me a ns the curre n t m agn it ud e is s u ch t ha t it w i l l take n hou rs to c o m p l e te l y d is cha r g e its n o mi n al ca p ac i ty If a c e ll h a s a n o mi n al ca p ac i ty of 5 Ah a n d if it is d i sch a rg e d at C/10 a n d C/5 c u rre n t rat e s, th e n w h a t is the actu a l va l ue of the curr e nt? C u rre n t V a l ue C/10 rate C/5 rate 0.5 A T he re a son for re p res e nti n g the ca p ac i ty in terms of Ah inst e ad of C o u l om b s is b e ca u se Ah in d ic a tes w h a t curr e nt rate sh o u l d be us e d to d i sch a rge the b a t t ery in 1 h. 1 A

Discharge Capacity The disc h arge c a pa c ity of a bat t ery depends on several factors. Two important ones are C-rate: C discharge de c rea s es w ith the increa s e in C -rate or the rate of drawing c h arge. Temperature: C discharge in c rea s es w ith the increa s e in temperature. Area under the discharge curve rep r esents the energy w hich a l so de c reases w ith the increase i n C- r a te, or decrease in temperature D i sch a rge C u rves C-rate dependence Temperature dependence

Types of Discharge Curves C e ll vo l ta g e is d e p e n d e n t on t he ch a rge sta g e or the e x te n t of re a ction Some of the discharge curves are essent i ally flat, others ha v e more than one flat r e gion, and still othe r s have a slanted and str e tched S - shape, at times w ith an appreciable slope. W hy do w e not i ce d i f ferent t y pes of di s cha r ge curves? It is important to understand the orig i n of the s e discharge curves

Example: Li/I 2 Electrochemical Cell L e t us try to e x ami n e the Li/ I 2 ce l l (use d in car d i a c p a cem a ker) a n d pr e d i ct its disc h ar g e curve (- ) Li / LiI / I 2 - P2VP (+) Met a l l ic Li is a n e g a tive e l ectr o de or a n o de I 2 + 1 0% Pol y - 2 -vin y lp y ridine (P2 V P) is a p o sitive e l ectr o de or c a th o de C h em i cal re a ction b e t w e e n the Li a nd I 2 form a sol i d L i I e l ectr o l y te Cell voltage w ill depend on the thermod y nam i cs of this chem i cal r x n.  G r   G f ( L iI ) M icrostructure E v olution of Li/ I 2 Cell   t i me Li di f fus e s through the solid Li I and reacts w ith I 2 at the Li I/I 2 interfa c e P2V P is added to render electronic condu c tivity in I 2

Example: Li/I 2 Electrochemical Cell Pred i ction of C e l l V o l tage in L i / I 2 C e ll T he e x p e rime n tally d et e rmin e d d i schar g e curve o f L i / I 2 ce l l sh o w s a p l at e a u a t 2 .8 V ∆ G f ( L i I ) = -2 6 9. 6 7 kJ / mol z i = +1; F = 9650 C / m o l  E  2. 7 9 5 V   The resi s tan c e is a ls o found to in c rea s e w hi c h c an be attributed to the in c rea s e in the thi ck ne s s of LiI electrol y te. This value is close to the experimentally found voltage t i me  G r   G f ( L i I )

Example: Li/I 2 Electrochemical Cell MTSE of Li/I 2 cell Le t u s try to estim a te the M T SE o f L i / I 2 ce l l Given, E = 2 .7 9 5 V T otal Ch a rge = 1 × 9 6 5 C W e i g h t of L iI = 6 .94 + 126 .9 = 133 .84 g T emperature Dep e nd e nce of C e ll V o l tage  G r   H r  T  S r N o w , At 2 5 o C S ( L iI )  85.7 7 J / K / m ol S ( L i )  29.0 8 J / K / m ol S ( I 2 )  116.1 4 J / K / m ol           Cell voltage varies slight l y in Li/I 2 cell.

Example: Li/I 2 Electrochemical Cell L e t us a ssume a h y p o th e tical case in w h i ch some I 2 d i sso l ve in Li el e ctro d e Now app l y ing Gibb ’ s pha s e ru l e , In this case, C = 2 and P = 1. T aking into a c count T and P , value of F = 1   T he electri c al potential of the lithiu m – iodine alloy is not fi x ed, but v aries, depending on other para m et e r s , such as the a m ount of iodine in the Li – I solid solution. Please note that this is a h y pothetical case in w hich it is assu m ed that iodine di f fuse s into the Li.

Example: Li/I 2 Electrochemical Cell T he p o sitive e l ectr o de ha s o n ly on e active com p o n e n t (e l em e nt), i o d i n e , w h i ch i s a n e l ectr o ch e mic a l l y active p h as e . T h u s , b o th C an d P h a ve va l u e s o f 1 . (- )Li / LiI / I 2 - P2VP(+) As a re s u l t, F = 0, if T and P are fi x ed. All the other inten siv e v ar i ables are f i xed and are independent of the s tate of c harge for the po sitiv e ele c trode ( I 2 ). Sin c e the c e l l v o l tage i s def i ned as the d i f feren c e in the potential of po sit i v e and negat i v e e l e c tro d e s, its v a l ue rema i ns independent of the s tate of c harge for L i / I 2 cell. T his e x planation m atches w ell w ith the discharge cur v e obser v e e x peri m entall y .

Discharge Process in Complex Electrode Materials A number of m a t eria l s are used as e l ec t rodes i n e l ec t roche m i c al ce l ls i n w h i ch mo r e t han on e re a c t ion occu r s i n sequenc e as t he ove r all discharge pr o cess occu r s S ome mat e r i als e x hi b it a ser i es of mult i -phase r e actions in w hi c h the r e sultant degr e es of f r eedom i s S ome mat e r i als under g o sequential r e actions w hi c h a re not simi l a r . In the Li-Ti-O system, a solid-solution of Spinel phase is formed followed by two-phase region and then Rocksalt phase. A discharge curve with a set of constant voltages plateau.

Discharge Process in Complex Electrode Materials Reconstitu t ion reac t ion t akes p l ace w hen mo r e t han 1 Li is added w h i ch result s in t w o phases contain i ng d i f f erent amoun t s of L i . The relat i ve amount of pha s es changes as the guest species (here, Li) is introduced into the host material. T he pha s e conta i ning high c on c entration of Li increases at the e x pen s e of pha s e w ith low Li amount. T h is oc c u r s th r ough mov i ng interface recon s titution reaction. Mo v ing Inter f ace R ea c tion It is important to note that the compositions of these two phases does not change but their relative amount changes. As a result, plateau in the potential is observed.

Bard, Allen J., and Larry R. Faulkner.  Electrochemical Methods: Fundamentals and Applications . 2nd ed. Wiley, 2000. ISBN: 9780471043720. Huggins, Robert A.  Energy Storage: Fundamentals, Materials and Applications. 2 nd ed. Springer, 2016. ISBN: 9783319212388. Reddy, Thomas B. Handbook of Batteries . Fourth ed. McGraw-Hill, 2011. Further Readings

Thank You
Tags