ENGINEERING MATERIALS CHAPTER THREE.pdf

Berento 16 views 28 slides Jun 06, 2024
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

Materials


Slide Content

CHAPTER THREE
Discrete and continuous density functions
Prepared by:
Muhabaw A.

Outline
2
❖Discrete probability mass function
❖Continuous density function
❖Mean and Variance
❖Some special distributions
❖Conditionals distribution

3
❑Supposethatthejumpsin�
??????(�)ofadiscreteR.V.Xoccuratthepoints
�
1,�
2,…,wherethesequencemaybeeitherfiniteorcountablyinfinite,and
weassume�
&#3627408470;<&#3627408485;
&#3627408471;if&#3627408470;<&#3627408471;.
❑Thefunction&#3627408477;
??????&#3627408485;iscalledtheprobabilitymassfunction(pmf)ofthe
discreteR.V.X.
Discrete probability mass function (pmf)

4
Cumulativedistributionfunction(cdf)ofpmf:-thecdfof&#3627408441;
??????(&#3627408485;)ofa
discreteR.VXcanbeobtainedby

5
Example3.1:-Givenaprobabilitymassfunctionf(x)=bx
3
forx=1,2,3.Find
thevalueofb.
Solution:Accordingtothepropertiesofprobabilitymassfunction,

??????∈??????
&#3627408467;&#3627408485;=1

??????=1
3
&#3627408467;&#3627408485;=1=&#3627408463;1
3
+2
3
+3
3
&#3627408463;36=1⇒&#3627408463;=
1
36

6
Example 3.2:-The probability mass function example is given below :
Let X be a random variable, and P(X=x) is the PMF given by,
&#3627408485;012345 6 7
&#3627408467;(&#3627408485;)0&#3627408472;2&#3627408472;2&#3627408472;3&#3627408472;&#3627408472;
2
2&#3627408472;
2
7&#3627408472;
2
+&#3627408472;
i.Determine the value of k
ii.Find the probability P(X≤ 6) and P(3<x≤ 6 )

Outline
7
❖Discrete probability mass function
❖Continuous probability density function
❖Mean and Variance
❖Some special distributions
❖Conditionals distribution

Continuous probability density function(pdf)
8
Let ??????
????????????=
??????&#3627408493;
????????????
????????????
➢Thefunction??????
????????????iscalledtheprobabilitydensityfunction(pdf)ofthe
continuousr.v.X.

9
Example 3.3:-If the probability density function is given as:
&#3627408467;&#3627408485;=ቊ
&#3627408485;&#3627408485;−1,0≤&#3627408485;<3
&#3627408485;, &#3627408485;≥3
The find ??????(1<&#3627408485;<2)?
Solution
??????1<&#3627408485;<2=න
1
2
&#3627408485;&#3627408485;−1&#3627408465;&#3627408485;
Example 3.4:If X is a continuous random variable with the probability
density function given as:
&#3627408467;&#3627408485;=ቐ
&#3627408463;&#3627408466;
−??????
2
,&#3627408485;≥0
0,&#3627408476;&#3627408481;ℎ&#3627408466;&#3627408479;&#3627408484;&#3627408470;&#3627408480;&#3627408466;
Then find the values of &#3627408463;?

Cumulative distribution function (cdf) of pdf
10
The cdf &#3627408493;
??????(??????)of a continuous r.v. X can be obtained by
&#3627408493;
????????????=????????????≤??????=׬
−∞
??????
??????
????????????????????????

11
Example 3.5:-The pdf .of a continuous r.v. X is given by
Find the corresponding cdf &#3627408441;
??????(&#3627408485;)and sketch &#3627408467;
??????(&#3627408485;)and &#3627408441;
??????(&#3627408485;)
Solution

Outline
12
❖Discrete probability mass function
❖Continuous probability density function
❖Mean and Variance
❖Some special distributions
❖Conditionals distribution

Mean and Variance function
13
Mean:-The mean (or expected value) of a r.v. X , denoted by &#3627409159;
??????&#3627408476;&#3627408479;&#3627408440;(??????)is
defined by
Moment:-The &#3627408475;
??????ℎ
moment of a r.v. X is defined by
Note that the mean of X is the first moment of X .

Mean and Variance function
14
Variance:-The variance of a r.v. X, denoted by ??????
??????
2
or ??????&#3627408462;&#3627408479;(??????)is defined by
??????
??????
&#3627409360;
=????????????????????????=&#3627408492;??????−&#3627408492;??????
&#3627409360;
=&#3627408492;??????−??????
??????
&#3627409360;
=&#3627408492;??????
&#3627409360;
−&#3627408492;??????
&#3627409360;

15
Example 3.6:-Consider a discrete r.v. X whose pmf is given by
Find the meanand varianceof X.
Solution
??????
??????=&#3627408492;??????=
&#3627409359;
&#3627409361;
−&#3627409359;+&#3627409358;+&#3627409359;=&#3627409358;
??????
??????
&#3627409360;
=????????????????????????=&#3627408492;??????−&#3627408492;??????
&#3627409360;
=&#3627408492;[??????−??????
??????
&#3627409360;
]=&#3627408492;??????
&#3627409360;
=
&#3627409359;
&#3627409361;
−&#3627409359;
&#3627409360;
+&#3627409358;
&#3627409360;
+&#3627409359;
&#3627409360;
=
&#3627409360;
&#3627409361;

16
Example 3.6:-Find the mean and variance of the r.v. X if the pdf of X is
Solution
??????
??????=&#3627408492;??????=න
&#3627409358;
&#3627409359;
??????&#3627409360;??????????????????=
&#3627409360;
&#3627409361;
&#3627408492;??????
&#3627409360;
=න
&#3627409358;
&#3627409359;
??????
&#3627409360;
&#3627409360;??????????????????=
&#3627409359;
&#3627409360;
??????
??????
&#3627409360;
=????????????????????????=&#3627408492;??????
&#3627409360;
−&#3627408492;??????
&#3627409360;
=
&#3627409359;
&#3627409360;

&#3627409360;
&#3627409361;
&#3627409360;
=
&#3627409359;
&#3627409359;??????

Outline
17
❖Discrete probability mass function
❖Continuous probability density function
❖Mean and Variance
❖Some special distributions
❖Conditionals distribution

Some special distributions
18
A.Bernoulli Distribution:
✓A r.v. X is called a Bernoulli r.v. with parameter pif its pmf is given by
✓The cdf &#3627408493;
????????????of the Bernoulli r.v. X is given by
✓The meanand varianceof the Bernoulli r.v. X are

19
Example3.7:Abasketballplayercanshootaballintothebasketwitha
probabilityof0.6.Whatistheprobabilitythathemissestheshot?
Solution:WeknowthatsuccessprobabilityP(X=1)=p=0.6
Thus,probabilityoffailureisP(X=0)=1-p=1-0.6=0.4
Answer:TheprobabilityoffailureoftheBernoullidistributionis0.4
Example 3.8:If a Bernoulli distribution has a parameter 0.45 then find its
mean.
Solution:Mean E[X] = p = 0.45
Example 3.9:If a Bernoulli distribution has a parameter 0.72 then find its
variance.
Solution:Variance Var[X] = p (1-p) = 0.72 (0.28) = 0.2016

Some special distributions
20
B.Binomial Distribution:
✓A r.v. X is called a binomial r.v. with parameters (n,p) if its pmf is given b
✓which is known as the binomial coefficient.
✓The corresponding cdf of X

21
Example3.10:-Abagcontains10marbles,6ofwhichareblueand4arered.An
experimentconsistsofpickingamarble(atrandom)fromthebag,makinganoteofits
colorandputtingitbackinthebag.Thisexperimentisrepeated5times.
Whatistheprobabilityofpickingexactly3bluemarbles?
Solution
Since the marble is put back in the bag at the end of each trial, the outcome of
each pick is independent of the previous. There are only two possible outcomes:
✓picking a blue (success),&#3627408477;=
6
10
=0.6
✓not picking a blue (failure),&#3627408478;=
4
10
=0.4
✓WedefinethediscreterandomvariableXasthe"numberofbluemarblespicked".
Usingthebinomialprobabilitydistributionfunctionwith5trials,n=5,probabilityof
asuccessp=0.6,for3successes,r=3,wefind:

Some special distributions
22
C.PoissonDistribution:
✓A r.v. X is called a Poisson r.v. with parameter &#3627409158;(>0) if its pmf is given

23
Example3.11:-Thenumberoftelephonecallsarrivingataswitchboardduring
any10-minuteperiodisknowntobeaPoissonr.v.Xwith&#3627409158;=2.
(a)Findtheprobabilitythatmorethanthreecallswillarriveduringany10-
minuteperiod.
(b)Findtheprobabilitythatnocallswillarriveduringany10-minuteperiod
Solution
(a)ThepmfofXis

Some special distributions
24
D.UniformDistribution:
✓A r.v. X is called a uniform r.v. over (a, b) if its pdf is given by

Some special distributions
25
E.ExponentialDistribution:

Outline
26
❖Discrete probability mass function
❖Continuous probability density function
❖Mean and Variance
❖Some special distributions
❖Conditionals distribution

Conditionals distribution
27
❑TheconditionalprobabilityofaneventAgiveneventBwithP(B)>0
??????&#3627408436;&#3627408437;=
??????&#3627408436;∩&#3627408437;
??????&#3627408437;
,&#3627408484;ℎ&#3627408466;&#3627408479;&#3627408466;??????&#3627408437;>0.
❑Theconditionalcdf&#3627408441;
??????(&#3627408485;|&#3627408437;)ofar.vX,giveneventBisdefinedby
&#3627408441;
??????&#3627408485;&#3627408437;=????????????≤&#3627408485;&#3627408437;=
????????????≤&#3627408485;∩&#3627408437;
??????&#3627408437;
➢IfXisadiscreter.vX,thentheconditionalpmf&#3627408477;
??????(&#3627408485;|&#3627408437;)isdefinedby
??????
??????????????????=????????????=????????????=
????????????=??????∩??????
????????????
➢IfXisacontinuousr.vX,thentheconditionalpdf&#3627408467;
??????(&#3627408485;|&#3627408437;)isdefinedby
&#3627408467;
??????&#3627408485;&#3627408437;=
&#3627408465;&#3627408441;
??????&#3627408485;&#3627408437;
&#3627408465;&#3627408485;

28