Engineering Mechanics Ch 1 Force System.ppt

VrushaliNalawadePati 1,926 views 120 slides Mar 28, 2024
Slide 1
Slide 1 of 120
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120

About This Presentation

this is the PPT on first module of the engineering mechanics:
FORCE SYSTEM:
CONTENTS;
Introduction to Mechanics, Laws of mechanics, Newton's Laws, Law of Parallelogram, Law of transmissibility, Characteristics of force, System of Forces, Method of resolution and composition moment of a force,
La...


Slide Content

Prepared By
Prof. V. V. Nalawade
ENGINEERING MECHANICS
Prof. V.V.Nalawade 1

Module 1: Force System 8hrs
Module 2 : Equilibrium 7hrs
Module 3: Center of Gravity and Moment of Inertia 7 hrs.
Module 4: Friction 6hrs
Module 5 : Kinematics 6hrs
Module 6 : Kinetics 6hrs
C
u
r
r
i
c
u
l
u
m
2

Prof. V.V.Nalawade 3
Engineering Mechanics
•Dr. R.K. Bansal
•N.H. Dubey
•Beer & Johnston
•K. L. Kumar
•R. V. Kulkarni
Applied Mechanics
•R. S. Khurmi
•Sunil Deo
•R. K. Singer
Reference Books

Prof. V.V.Nalawade 4
CASIO
Fx-991MS

Prerequisite
Basic Concepts
Resolution &
composition of forces
Contents of the presentation
Prof. V.V.Nalawade 5

Prof. V.V.Nalawade 6

Coordinate Geometry
Prof. V.V.Nalawade 7
II
Quadrant
(-,+)
I
Quadrant
(+,+)
III
Quadrant
(-,-)
IV
Quadrant
(+,-)

Slope of line
Prof. V.V.Nalawade 8
θ
(X2-X1)
(Y2-Y1)
P
Q (X2,Y2)
(X1,Y1)
X Axis
Y Axis
m = tan θ =

Few more to Recall……
Trigonometry
Pythagoras Theorem
Cosine & Sine rule
Sign conversion
Unit conversion
Prof. V.V.Nalawade 9

1.
Force
System
Prof. V.V.Nalawade 1
0

Prof. V.V.Nalawade 11
Sr.
No.
Topic Learning Objective
(TLO)
COBL
CA
Code
1
Torecallthebasicprinciplesof
mechanics
CO1 L1 1.2, 1.3
2
Todescribetheconceptson
mechanicsanditspractical
implementation
CO1 L2 1.1, 1.2
3
Toidentifytheforcesystemand
calculatetheresultantofit
CO1 L3
1.2, 2.1,
12.2
4
Toanalyzethenumericalof
differentcases
CO1 L32.1, 12.2
Learning Outcome:
At the end of the topic the student should be able to:

Branches of Mechanics
Engineering
Mechanics
Statics
(Rest)
Dynamics
(Motion)
KineticsKinematics
EM is the branch of physics which deals with the study of forces and their
effect on body when body is at rest or in motion.
With Reference to the
Cause of motion
Without Reference to the
Cause of motionProf. V.V.Nalawade 1
2

Prof. V.V.Nalawade 1
3

Prof. V.V.Nalawade 1
4

Prof. V.V.Nalawade 15
We learn
ENGINEERING
MECHANICS

Prof. V.V.Nalawade 16

automobiles,aircrafts,electricmotors,robots,
television,mobile,satellite,projectileofmissiles,
launchingofrockets,radarcommunication,trusses,
liftingmachineslikecrane,hoist,screwjack,
elevator,conveyorbelt,cargoship,submarine,etc.
Prof. V.V.Nalawade 17

Laws of Mechanics
The following are the fundamental laws of mechanics:
(i) Newton’s first law
(ii) Newton’s second law
(iii) Newton’s third law
(iv) Newton’s gravitational law
(v) Law of transmissibility of forces
(vi) Parallelogram law of forces
Prof. V.V.Nalawade 1
8

Prof. V.V.Nalawade 1
9Image source: https://issuu.com/daennagonzalez/docs/newton___s_laws_of_motion

Prof. V.V.Nalawade 20

Prof. V.V.Nalawade 21

Prof. V.V.Nalawade 22

Prof. V.V.Nalawade 23

Prof. V.V.Nalawade 24
Because the
amount of
acceleration of a
body is
proportional to
the acting force
and inversely
proportional to
the mass of the
body

Prof. V.V.Nalawade 25

Prof. V.V.Nalawade 26
Balloon
goes up
Air goes
down

27Prof. V.V.Nalawade

Prof. V.V.Nalawade 28

Prof. V.V.Nalawade 29
1.WhathappensaccordingtoNewtonifyouletan
untiedballoongo????

Prof. V.V.Nalawade 30
1.WhathappensaccordingtoNewtonifyouletan
untiedballoongo????
Balloon
goes up
Air goes
down
3 rd Law
Airwillrushoutoftheballoon
forcingtheballoontomove
throughtheairintheopposite
direction,butequalinforce.

Prof. V.V.Nalawade 31
2. Describe what happens if you are riding a skateboard
and hit something (like a curb) with the front wheels???

Prof. V.V.Nalawade 32
2. Describe what happens if you are riding a skateboard
and hit something (like a curb) with the front wheels???
1 stLaw
Your body will keep moving forward and fly off your
skateboard since the curb only stops the board, not
yourself.

Prof. V.V.Nalawade 33
3.Describewhyyouholdyourgunnexttoyour
shoulderwhiledeerhunting????

Prof. V.V.Nalawade 34
3.Describewhyyouholdyourgunnexttoyour
shoulderwhiledeerhunting????
3 rd Law
When you pull the gun’s trigger, it
forces the bullet out of the gun, but
at the same time, the gun is forced
in the opposite direction of the
bullet (towards you). Your shoulder
is a new force that is introduced in
order to keep your gun from flying
away from you.

Prof. V.V.Nalawade 35
4.Whyshouldwewearseatbelts–useoneofNewton’s
Lawsinyouranswer?

Prof. V.V.Nalawade 36
4.Whyshouldwewearseatbelts–useoneofNewton’s
Lawsinyouranswer?
Weshouldwearseatbeltssoifweareinanaccidentourbody
doesn’tkeepmovingatthesamespeedandinthesamedirection
thatthecarwasgoing.Anewforcewouldbeintroducedtoour
bodies(theseatbelt)inordertokeepourbodiesinplace.

Prof. V.V.Nalawade 37

Prof. V.V.Nalawade 38
Newton’s third law would tell us that when the rocket
pushes out fire with a specific amount of force, the rocket
will move in the opposite direction, but with the same
amount of force. This is what causes the rocket to shoot
up into the air.

Prof. V.V.Nalawade 39
6.ExplainhoweachofNewton’slawsaffectsagameof
TugofWar.

Prof. V.V.Nalawade 40
6.ExplainhoweachofNewton’slawsaffectsagameof
TugofWar.
•FirstLaw:Theropewillstayinthesameplaceuntilthetuggingstarts
(anewforceisintroduced)
•SecondLaw:Wecouldmeasureateam’sforcethattheycanpullthe
ropewithbasedontheirbodymassesandtheaccelerationthatthey
arecausingtheropetomoveat.
•ThirdLaw:1teampullstheropetowardsthemselveswithacertain
amountofforceandtheopposingteamisalsoputtingforceontherope.
Thesameamountofforceisappliedfromthegroundtothepeopleas
theyareputtingontheground.

41
Concept of force and its measurements
Prof. V.V.Nalawade

42Prof. V.V.Nalawade

43
1. Magnitude: 2. Direction :
Prof. V.V.Nalawade

44
3. Point of application :
4. Sense or
Nature :
Prof. V.V.Nalawade

Prof. V.V.Nalawade 45
Questions:
1.DefineMechanics.Whatarethedifferentbranchesof
mechanics?
2.Whatarethecharacteristicsofforce?

Prof. V.V.Nalawade 46
System of forces

SystemofForces
Severalforcesactingsimultaneouslyuponabody
Force System
Coplanar
Concurrent Collinear
Parallel
Like Unlike
Non Concurrent
& Non Parallel
(General)
Non-coplanar
Concurrent
Collinear
Parallel
Like Unlike
Non Concurrent
& Non Parallel
(General)
Prof. V.V.Nalawade 4
7

CoplanarSystemofForces2D
4
8
Prof. V.V.Nalawade

Non-CoplanarSystemofForces
4
9
Prof. V.V.Nalawade

Composition of forces
Forces added to obtain a single force which produces
the same effect as the original system of forces.
This single force is known as Resultant force.
The process of finding the resultant force is called
composition of forces.
Prof. V.V.Nalawade 50

Composition of forces
There are two methods of finding resultant
1.Analytical method
2.Graphical method
Analytical methods are
Parallelogram law &
Method of Resolution
Prof. V.V.Nalawade 51

Prof. V.V.Nalawade 5
2

Type I: Problems on Composition of Forces by
Parallelogram and Triangle LawSin Sin Sin
R P Q
  

Where,
R = Resultant of force P & Q
θ= Angle Between P & R
β= Angle Between P & Q
α = Angle Between Q & R
1.1 Law Of Parallelogram:- 1.2 Triangle Law :-
Prof. V.V.Nalawade 5
3

Ex.1. Find the resultant of the following forces
•Solution : Method i) By Parallelogram Law
Prof. V.V.Nalawade 54
3 N
4N
3 N
4N
R
α
R = 5 N

Continue……..
Prof. V.V.Nalawade 55
•Solution : Mathodii) By Triangle Law
3 N
4N
R
α
By Cosine rule
R = 5 N
By Sine rule

Prof. V.V.Nalawade 56
70 N
50 N
60ᵒ
70 N
50 N
α
R
α
70 N
50 N
120ᵒ 60ᵒ
R

Prof. V.V.Nalawade 57

Prof. V.V.Nalawade 58
500 N
50
300 N
500 N
300 N
50

Prof. V.V.Nalawade 59
Resolution of forces
Definition
Problems

Resolution of forces
•The way of representing a single force into number of
forces without changing the effect of the force on
the body is called as resolution of forces.
Prof. V.V.Nalawade 60
R
Fx
Fy

Prof. V.V.Nalawade 61
Fx
Fy
R = 10
= 90

Ex. 1. Two Forces act at an angle of 120°. The bigger force is of 40N and the resultant
is perpendicular to the smaller one. Find the smaller force.
Prof. V.V.Nalawade 6
2
F2 = 20 N

Ex. 2. Resolve the 100 N force acting a 30°to horizontal into two component one along
horizontal and other along 120°to horizontal.
Prof. V.V.Nalawade 6
3

Resolution of a force into two mutually perpendicular
components (Rectangular Components)
•LetaforceFbeinclinedatanangleasshowninfig.
Wehavetoresolveitintotwomutuallyperpendicular
componentsFxalongX-AxisandFyalongY-Axis.
Prof. V.V.Nalawade 64
A
B
O
•FrompointAonthelineofactionof
aforce,drawperpendicularABon
X-Axis.
•Nowwehavetocalculatethe
lengthsOB&AB.
•Length OB represents the
magnitudeofXcomponenti.e.(Fx)
•&SimilarlyABrepresents(Fy)

Prof. V.V.Nalawade 65
•In ∆ AOB,
OB = OA cos θ
But OA = F
Therefore, OB = F cos θ
Lets say OB = Fx, as it is the magnitude of
x-component
Hence, Fx= F cos θ
A
B
O
Fy
Fx

Prof. V.V.Nalawade 66
•In ∆ OBA,
AB = OA sin θ
But OA = F
Therefore, AB = F sin θ
Lets say AB = Fy, as it is the magnitude of y-
component
Hence, Fy= F sin θ
A
B
O
Fy
Fx

Resolution of a force into two non perpendicular
components (Oblique Components)
•Aforcecanalsoberesolvedalongthetwo
directionswhicharenotatrightanglesto
eachother.
•In∆OAC,Applyingsinerule,weget
Prof. V.V.Nalawade 67
α
β
(α+β)
F1
F2
F1
F2
O
B
C
A
F
F2
F1
α
β

Resolution of Force By Perpendicular componentcos
sin
x
y
FF
FF




1
st
Quad = Fx (+ve) & Fy (-ve)
2
nd
Quad = Fx (-ve) & Fy (+ve)
3
rd
Quad = Fx (-ve) & Fy (-ve)
4
th
Quad = Fx (+ve) & Fy (-ve)
Where,
Fx = Horizontal component of
Force
Fy = Vertical Component of
force
Prof. V.V.Nalawade 6
8

Q. 2 Find the Component of force 100 N passing
through the points (0,2) & (-1,2)
Prof. V.V.Nalawade 69
-1
1
-2
2
(-1,2)(0,2)
F = 100 N
-1
1
-2
2
(-1,2)(0,2)
F = 100 N
Θ= 0cos
sin
x
y
FF
FF



 Fx = 100N
Fy = 0
Θ= 180
Fx = -100N
Fy = 0

Resolution of Force By Non-Perpendicular component
1
st
Quad = Fx (+ve) & Fy (-ve)
2
nd
Quad = Fx (-ve) & Fy (+ve)
3
rd
Quad = Fx (-ve) & Fy (-ve)
4
th
Quad = Fx (+ve) & Fy (-ve)
Prof. V.V.Nalawade 7
0
F
F2
F1
α
β

Prof. V.V.Nalawade 71
60°
105°
330°
X-axis
2000 N
F1
F2

Prof. V.V.Nalawade 72
X-axis
F1
F2
F
30°
60°

Method of resolution
STEPWISE PROCEDURE OF METHOD OF
RESOLUTION:
i.Resolveallforceshorizontallyandfindthealgebraic
sumofallthehorizontalcomponents(i.e.,ΣFx)
ii.Resolveallforcesverticallyandfindthealgebraicsum
ofalltheverticalcomponents(i.e.,ΣFy).
iii.TheresultantRofthegivenforceswillbegivenbythe
equation:
iv.Theresultantforcewillbeinclinedatanangleθ,with
thehorizontal,suchthat
v.Positionoftheresultant
Prof. V.V.Nalawade 73

1.4 Design steps of resolution of concurrent force system :-
Case I :-When magnitude and direction
of all forces in the force system is given
& resultant is to be determined
Step 1:-Find ΣFx (Horizontal
Component)
Step 2:-Find ΣFy (Vertical Component)
Step 3:-Find Magnitude of Resultant
Step 4:-Find Direction of Resultant
Step 5:-Find Position of Resultant22
xy
R F F    1
tan
y
x
F
F





Case II :-When resultant is horizontal
Σ Fx = R and ΣFy = 0
Case III :-When resultant is Vertical
Σ Fx = 0 and ΣFy = R
Case IV :-When resultant is Zero
Σ Fx = 0 and ΣFy = 0
Case V :-When magnitude & Direction
of resultant is given & magnitude &
direction of any one force among the
force system is to be determined
Σ Fx = R cos θand ΣFy = R sin θ
θis measured w.r.tX-axis
Prof. V.V.Nalawade 7
4

Prof. V.V.Nalawade 75

Prof. V.V.Nalawade 76
X-Axis
Y-Axis
155.8 N
76.6ᵒ

Prof. V.V.Nalawade 77
132.3ᵒ
45.6 N
X-Axis
Y-Axis
47.7ᵒ

Prof. V.V.Nalawade 78
X-Axis
Y-Axis
29.09 N
45.89ᵒ

Prof. V.V.Nalawade 79
132.3ᵒ
45.6 N
X-Axis
Y-Axis
47.7ᵒ
132.3ᵒ
45.6 N
X-Axis
Y-Axis
47.7ᵒ
X-Axis
Y-Axis
29.09 N
45.89ᵒ

Prof. V.V.Nalawade 80
X-Axis
Y-Axis
29.09 N
45.89ᵒ

Prof. V.V.Nalawade 81
Moment of force
Law of moments
Varignon’sTheorem
Couples
Problems

Moment of forces
•Therotationaleffectproducedbyforceis
knownasmomentofforce.
•Itisequaltothemagnitudeofforce
multipliedbytheperpendiculardistanceof
thepointfromthelineofactionoftheforce.
•M=Fxd
•UnitN.m,KN.m,N.mmetc.,
Prof. V.V.Nalawade 82

Sign Convention
Prof. V.V.Nalawade 83
Clockwise (+VE) Anti-Clockwise (-VE)
F
dO
F
d
O
F
d O
F
d
O
M@O = F x d

Law of Moments
•It states that, “ In equilibrium when no of
coplanar forces act on a body, the sum of the
clockwise moments@ any point in their plane is
equal to the sum of the anticlockwise
moments @ the same point.
•Algebraic sum Clockwise moments = Algebraic
sum Anti-Clockwise moments @ same point
Prof. V.V.Nalawade 84

•Moment about pivot
•500*2 = 1000*1
•1000 = 1000
•Algebraic sum Clockwise moments = Algebraic
sum Anti-Clockwise moments @ same point
Prof. V.V.Nalawade 85

To find beam
reaction
To find forces in
frames
Prof. V.V.Nalawade 86
Use of Law of Moments

Varignon’s theorem of moments
•It status that, “ The algebraic sum of moments of all
forces about any point is equal to the moments of
their resultant about the same point.”
•Let ƩM
FA=Algebraic sum of moments of all forces
about any point A
•ƩM
RA=Moment of resultant force about same point A
•Then ƩM
FA= ƩM
RA
•i.e. F1.x1 + F2.x2 + F3.x3+……..+Fn.Xn = R.x
Prof. V.V.Nalawade 87

Use of Varignon’s theorem of moments
Prof. V.V.Nalawade 88
•Thistheoremisveryusefulinlocatingthe
positionoftheresultantofnon-concurrent
forces.

Examples of Moment of forces
•Rotation of door
•Tightening of nut by spanner
•Compass etc.,
Prof. V.V.Nalawade 89

Couple
•Twonon-colinear,equal,unlike,parallelforces
formsacouple.
•Astheforcesareequal&oppositetheir
resultantisZERO.
•Hencecoupleproducesonlyrotarymotion
withoutproducinglinearmotion.
Prof. V.V.Nalawade 90

Prof. V.V.Nalawade 91
Examples of Couple
Rotation of Steering Wheel, key, tap etc.,

Lever Arm OR Arm of the Couple
•The distance between two forces of a couple
is known as lever arm.
•SI unit of couple is same as moment i.e. N.m,
N.mm, KN.m, KN.mm etc.,
Prof. V.V.Nalawade 92
a
P
P

Sign Convention
Prof. V.V.Nalawade 93
a
P
P
a
P
P
Clockwise (+VE) Anti-Clockwise (-VE)

Properties of Couple
•Theresultantoftheforceofacoupleisalways
ZERO.i.e.R=P–P=0
•Themomentofcoupleisequaltotheproduct
ofoneoftheforceandleverarm.
i.e.M=Pxa
Prof. V.V.Nalawade 94
a
P
P

Properties of Couple
•Themomentofcoupleaboutanypointis
constant.
•Momentofcouple=Pxa
•Momentofcouple@C=P*AC–P*BC=P*a
•Momentofcouple@D=-P*AD+P*BD=P*a
Prof. V.V.Nalawade 95
a
P
P
D CBA

Properties of Couple
•Acouplecanbebalancedonlybyanother
coupleofequalandoppositemoment.
•Twoormorecouplesaresaidtobeequal
whentheyhavesamesenseormoment
•Moment=100*1=100N.m=10*10=100N.m
=50*2=100N.m
Prof. V.V.Nalawade 96
2 m
50 N
50 N
10 m
10 N
10 N
1 m
100 N
100 N

Properties of Couple
•Couplecanonlyrotatethebodybutcannot
translatethebody.
•Acoupledoesnothavemomentcentre,like
momentofforce.
Prof. V.V.Nalawade 97

Prof. V.V.Nalawade 9
8

Prof. V.V.Nalawade 9
9

1.5 Moment of force:-
M= F x d
Unit = N.m or KN.m
Clockwise = +ve
Anticlockwise = -ve
Couple:-
M= F x d
Unit = N.m or KN.m
Clockwise = +ve
Anticlockwise = -ve
Varignon’s Theorem:-
Moment of resultant about any point A = Σof moments
of all the forces about same point A.
R x d = ΣM
Prof. V.V.Nalawade 1
0
0

1.6 Resultant of parallel force
system:-
Step 1:-Find R = ΣF
Step 2:-Find ΣM @ O
Step 3:-Apply Varignon’s theorem
ΣM @ O = R. d
Step 4:-Find position of resultant
w.r.t. O
i)ΣF (upward) = Σmo (+ve)
ii)ΣF (downward) =Σmo (-ve)
1.7 Resultant of general force
system:-
Step 1:-Find ΣFx (Horizontal Component)
Step 2:-Find ΣFy (Vertical Component)
Step 3:-Find Magnitude of Resultant
Step 4:-Find Direction of Resultant
Step 5:-Find ΣM @O
Step 6:-:-Apply Varignon’s theorem
ΣM @ O = R. d
Step 4:-Find position of resultant w.r.t. O22
xy
R F F    1
tan
y
x
F
F





Prof. V.V.Nalawade 1
0
1

MethodofapproachtosolveCoplanar(2D)problems
Problem
2-D
Concurrent
NotEquilibrium
(Resultant)
1.ParallelogramLaw
2.Trianglelaw
3.Polygonlaw
4.Methodofprojections
Equilibrium
(Unknowns)
F=0x
F
y=0
Non-concurrent
NotEquilibrium
(Resultant)
1.ChooseareferencePoint
2.Shiftalltheforcestoapoint
3.Findtheresultantforceand
coupleatthatpoint
4.Reducetheforce-couple
systemtoasingleforce
Equilibrium
(Unknowns)
ΣF
x=0
ΣF
y=0
ΣM
z=0
Prof. V.V.Nalawade 1
0
2

Prof. V.V.Nalawade 1
0
3

Problem–2D-Concurrent-Resultant
Ex.1. Determinetheresultantofthefollowingfigure
Prof. V.V.Nalawade 1
0
4

Prof. V.V.Nalawade 1
0
5

Ex.2. Theresultantofthefourconcurrentforcesasshownin
FigactsalongY-axisandisequalto300N.Determinethe
forcesPandQ.
Problem–2D-Concurrent-Resultant
F
x
0
9
F
y
R300N
Prof. V.V.Nalawade 1
0
6

F
x
800380QSin45Psin500
F
y
QCos45PCos50R300
Solve quadratic equation and find
P = 511 N
Q =-40.3N
Problemsolution
Fx0
F
y
R300N
Prof. V.V.Nalawade 1
0
7

Prof. V.V.Nalawade 1
0
8

Determinetheresultantofthefollowingfigure
Problem–2D-NonConcurrent-Resultant
Problem
Prof. V.V.Nalawade 1
0
9

ResultantofGeneralforcesinaplane–
Coplanarnon-concurrent
Step2:Shiftalltheforcestoapoint
Step3:Findtheresultantforce
Step4:Reduceresultantforce
Step1:Chooseareferencepoint
Prof. V.V.Nalawade 1
1
0

Resultant–Non-concurrentgeneralforcesinaplane
Step:1:ChooseAasreferencePoint Step:2:ShiftallforcestopointA
Step:4:ReduceittoasingleforceStep3:Findresultantforceandcouple
x=1880/600
x=3.13m
Problemsolution:
Prof. V.V.Nalawade 1
1
1

Determinetheresultantofthefollowingfigure
Problem–2D-NonConcurrent-Resultant
Problem
Prof. V.V.Nalawade 1
1
2

Example:
Resultant–Non-concurrentgeneralforcesinaplane
Determinetheresultantforceofthenon-concurrentforcesasshownin
plate and distanceoftheresultantforcefrompoint O͛.
Step:2
Step:4
Step:3
Step:1
Problemsolution
Prof. V.V.Nalawade 1
1
3

Continued……
Prof. V.V.Nalawade 1
1
4

Prof. V.V.Nalawade 1
1
5

Prof. V.V.Nalawade 1
1
6

Prof. V.V.Nalawade 1
1
7

Exercise 2
Prof. V.V.Nalawade 1
1
8

Prof. V.V.Nalawade 11
9
References
•Engg.Mechanics,Timoshenko&Young.
•2.Engg.Mechanics,R.K.Bansal,Laxmipublications
•3.EngineeringMechanics,Fedinand.L.Singer,Harper–Collins.
•4.EngineeringMechanicsstaticsanddynamics,ANelson,McGraHill
publications
•5.Engg.MechanicsUmeshRegl,Tayal.
•6.EngineeringMechanicsbyNHDubey
•7.EngineeringMechanics,statics–J.L.Meriam,6thEdn–WileyIndiaPvtLtd.
•8.EngineeringMechanics,dynamics–J.L.Meriam,6thEdn–WileyIndiaPvtLtd.
•9.MechanicsForEngineers,statics-F.P.Beer&E.R.Johnston5thEdnMcGraw
HillPubl.
•10.MechanicsForEngineers,dynamics-F.P.Beer&E.R.Johnston–5thEdnMc
GrawHillPubl.
•11.www.google.com
•12.http://nptel.iitm.ac.in/

Prof. V.V.Nalawade 12
0
Thank YOU