Engineering Mechanics- Sttatics - Concurrent Forces

AhmedSalem97103 5 views 26 slides Aug 25, 2024
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

Three


Slide Content

ميحرلا نمحرلا للها مسب

Concurrent Forces
in Three Dimensions

3D relations as generalizations of 2D
relations.

y
z
x
O
j
i
k
x
y
O
j
i
),,(
AAA
zyxA( , )
A A
Ax y

A = A
x i + A
y j + A
z k
222
zyx
AAAA 
A = A
x i + A
y j
2 2
x y
A A A 
cos
x
x
A
A

cos
y
y
A
A

cos
z
z
A
A

cos
x
x
A
A

cos
y
y
A
A


( ) ( ) ( )
AB B A B A B Ax x y y z z     r i j k
( ) ( )
AB B A B Ax x y y   r i j
yx
A
AA
A A A
  
A
u i j
yx z
A
AA A
A A A A
   
A
u i j k

cos cos
x yA   u i j
cos cos cos
x y zA     u i j k
2 2
cos cos 1
x y  
2 2 2
cos cos cos 1
x y z    
2 2
( ) ( )
( ) ( )
AB B A B A
AB
AB
A B A B
x x y y
x x y y
  
 
  
r i j
u
r
2 2 2
( ) ( ) ( )
( ) ( ) ( )
AB B A B A B A
AB
AB
A B A B B A
x x y y z z k
x x y y z z
    
 
    
r i j
u
r

( ) ( )
x yF F  R i j
( ) ( ) ( )
x y zF F F    R i j k
0
0
x
y
F
F




0
0
0
x
y
z
F
F
F





double projection case
x
y
z


F
O
A
B
C

x
y
z
0
90
Fz
F
xyF
O
A
C
B

cos
sin
z
xy
F F
F F



x
y
z

zF
x yF
yF
x
F
O
C
D
E
cos
sin cos
x xyF F
F

 


sin
sin sin
y xyF F
F

 

Example 3.4Express the force vector F shown in Figure
(a) as a Cartesian vector. Also define its
direction.

6.8660sin100 
o
zF
4.3545cos5045cos 
oo
xyxFF
5060cos100 
o
xyF
4.3545sin5045sin 
oo
xyyFF

 N 6.86 5.43 5.43 kjiF 
N 100)6.86(5.4)3(5.4)3(
222
F
354.0 cos
o
3.69
354.0 cos
o
111
866.0 cos
o
30

Example 3.2
Among the wires attached to the tower
shown, three wires AB, AC and AD are
attached to point A which lies on z axis. The
magnitudes of the tensions in these cables
are 50 N, 300 N and 400 N, respectively. If
cable AD is parallel to the y axis, determine
the magnitude and direction angles of the
resultant of these tensions at point A.

2
4
1
2
60
o
45
o
A
B
C
D
x
y
z
A(0,0,12)
C(2,-4,0)

4
1
2
60
o
45
o
A
B
C
D
x
y
z
as cable AD is parallel to the y axis yet with
opposite sense then
T
AD = -400 j

A(0,0,12)
C(2,-4,0)
AC = 2 i - 4 j - 12 k
2 4 12
4 16 144
AC
 

 
i j k
u
300
(2 4 12 )
12.81
AC
  T i j k
T
AC
= (46.85 i -93.7 j - 281.1 k) N

60
o45
o
A
B
x
y
z
5
0
s
i
n
6
0
o
T
AB(z = -50 sin (60
o
) = - 43.3 N
T
AB(xy =50 cos (60
o
) = 25 N

45
o
Bx
y
z
25sin45
o
T
AB(x =25 cos (45o) =17.68 N
T
AB(y =25 sin (45o) =17.68 N
T
AB =(17.68 i + 17.68 j -43.3 k) N

R =( 17.68 +46.85) i + (17.68-93.7-400) j + (-43.3 - 281.1) k N
R = (64.53 i – 476 j - 324.4 k) N
R = 579.6 N
64.53
cos
579.6

1
cos (0.11) 83.6
o


 
476
cos
579.6



1
cos ( 0.82) 145.2
o


  
324.4
cos
579.6



1
cos ( 0.56) 124
o


  

Example
3.7
The 100 kg crate shown is supported as
shown. Determine the tension in cords AC
and AD and the stretch of the spring.
)0 ,0 ,0(A
( 1, 2, 2)D

N 981 )81.9)(100( kkW 

B BF NF i
 cos 120 cos 135 cos 60
o o o
C C
F  F i j k
 N 5.0 707.0 5.0 kji 
CF

 N 667.0 667.0 333.0 kji 
DF





 

3
2 2 1

kji
uF
DADDD
FF
)0 ,0 ,0(A
( 1, 2, 2)D

0
x
F 0333.0 5.0 
DCB
FFF
0
y
F 0 667.0 707.0 
DC FF
0
z
F 0981 667.0 5.0 
DC
FF
CD
FF 06.1
N 813
CF
N 628 
DF
694 N
B
F

LkF
B

694
0.462 m
1500
L  
The force F
B
is expressed in newtons
(N) while the spring constant is
expressed in kilo newton per meter
(kN/m).
Tags