ESP_data_analysis Operatiion_1739412163.pdf

guerdieh211178 6 views 31 slides Sep 15, 2025
Slide 1
Slide 1 of 31
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31

About This Presentation

Data ESP operation


Slide Content

Analysis of
ESP Pumps Data
Contact us:

▪Electric submersible systems use multiple pump
stages mounted in series within a housing,
mated closely to submersible electric motor on
the end of tubing and connected to surface
controls and electric power by an armor
protected cable.
▪Wide performance range and versatility
▪Can operate in high angle & horizontal wells
▪Most efficient and economical lift method on a
cost-per-barrel basis
▪Tubing must be pulled to change or repair the
pump
▪Depth and GOR restrict capacity and operating
efficiency
Electric Submersible Pumps

Process of diagnosis
Pressure
Depth
Wellhead
Pump
Perforations
Pdischarge= WHP + Pgravity + Pfriction
1.ABOVE THE PUMP
1.ACROSS THE PUMP
Pintake= Pdischarge -Ppump
1.BELOW THE PUMP
Pwf= Pintake+ Pgravity + Pfriction
Pwf= Pr–(Q / PI)

ESP Diagnosis
Exercise.
Draw
i)Gradient plot
ii)Pump curve
iii)Trend over time of P Discharge & P intake
iv)Amp Chart
for the following cases
1.Shut in
2.Frequency change 50 –60 hz
3.Broken Shaft
4.Increasing water cut from 0% -> 40% -> 90 %
5.Pump wear

Initial data modelled &
compared with measured
data –discrepancies found
Match gradient above pump
using fluid properties
Match across the pump
using flow and inflow calcs
Resulting data validates fluid
properties and running conditions.
This allows accurate analysis for
Optimisation.

Two pressures even better…..
•Increasing watercut
50% 90%
Pi const Pd
Pwf

What pressures tell us…..
Controlled by Used to validate
Pd THP, Fluid density, Friction (Flowrate
dependent)
Watercut
Pi Pd, Pump performance, Flowrate,
Reservoir pressure, Well productivity,
Fluid density
Pr and or PI
Pd -
Pi
Pump flowrate vs head curve Pump Wear
Flowrate
Recirculation

Modelling can …..
•Provide preliminary indication that says:
“ we have a problem!”P
RES
0
200
400
600
800
1,000
1,200
1,400
1,600
1,800
0 50 100 150
Pressure (bara)
True Vertical Depth (m TVD)
Measured data
Res. pressure
0
500
1,000
1,500
2,000
2,500
0 200 400 600 800 1,000 1,200
Average pump flowrate (rm
3
/day)
Total head (m)
Head (50 Hz)
Head (60 Hz)
Head (70 Hz)
Head w/corr. factors
Head at op. freq.
Range (min/max)
Op. Point

Requires analysis skills to say …..
•Pump not providing
correct head (lost
stages or wear)?
•Water cut wrong?
•THP wrong?
•Flowrate
measurement wrong?
•High viscosity?
•…..which is it?P
RES
0
200
400
600
800
1,000
1,200
1,400
1,600
1,800
0 50 100 150
Pressure (bara)
True Vertical Depth (m TVD)
Measured data
Res. pressure
0
500
1,000
1,500
2,000
2,500
0 200 400 600 800 1,000 1,200
Average pump flowrate (rm
3
/day)
Total head (m)
Head (50 Hz)
Head (60 Hz)
Head (70 Hz)
Head w/corr. factors
Head at op. freq.
Range (min/max)
Op. Point

Example …..

Example…..
•Production down from 600
m3/day to zero (from pump
dP). Amps no change.
•ESP protected by trips (Tm)
•Well analysed –inflow
problem identified
•Acid job performed
•Production after acid job
1300 m3/day
•ESP saved 0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000
0 5,000 10,000 15,000 20,000
Average pump flowrate (rb/day)
Total head (feet)
Head (50 Hz)
Head (60 Hz)
Head (70 Hz)
Head (w/ CFs)
Head at op. freq.
Range (min/max)
Op. Point

Monitoring & Control
The Phoenix MultiSensor System
•Intake Pressure & Discharge Pressure
•Motor Winding Temperature
•Intake Temperature
•Vibration
•Current Leakage
•Flow (or Discharge Temperature)

What can we do with this data?
•Monitoring
•Trending
•Protection
•Validation & Analysis
•Use the analysis results for optimisation

Typical Monitoring Data
Time Pi Pd Ti Tm Vib Cl
9:56:34 30294414125.6133.80.23 0.1
9:56:55 30274426125.8134 0.2530.102
9:57:16 30264410125.8134.10.2490.105
9:57:36 30314418125.5133.80.240.101
9:57:57 30244408125.8134 0.2310.105
9:58:17 30234404125.5133.80.2460.102
9:58:38 30334420125.8134.10.2510.099
9:58:58 30294410125.6134 0.2620.096

0
500
1000
1500
2000
2500
3000
03/11/1996 15:50 03/11/1996 16:16 03/11/1996 16:42 03/11/1996 17:09 03/11/1996 17:35 03/11/1996 18:01 03/11/1996 18:27 03/11/1996 19:23 03/11/1996 20:13 03/11/1996 20:40 03/11/1996 21:06 03/11/1996 21:32 03/11/1996 21:58 03/11/1996 22:24 03/11/1996 22:51 03/11/1996 23:17 03/11/1996 23:43 04/11/1996 00:09 04/11/1996 00:36 04/11/1996 01:02 04/11/1996 01:28 04/11/1996 01:54 04/11/1996 02:21 04/11/1996 02:47 04/11/1996 03:13 04/11/1996 03:39 04/11/1996 04:05 04/11/1996 04:32 04/11/1996 04:58 04/11/1996 05:24 04/11/1996 05:50 04/11/1996 06:17 04/11/1996 06:43 04/11/1996 07:09 04/11/1996 07:35
PRESSURE (PSI)
160
170
180
190
200
210
220
230
TEMPERATURE (F)
Start up 1
40 Hz
Start up 2
40 Hz
Start up 3
40 Hz
Start up 4
40 Hz
46 Hz
48 Hz
50 Hz 14%choke
50 hz choke 40%
Choke 18%
Choke 20%
Choke gradually
increased to 40%
Start up 5
40 Hz
Shutdown
Frequency increased
to 50 HZ,choke to 25%
Choke gradually
reduced to 15%
Choke 20%
choke 27%
Intake Pressure Discharge Pressure
Motor Temp Intake Temp Data Trending

Real Examples !Phoenix ESP Monitoring & Protection
MOTOR COOLING & PUMP OFF PROTECTION
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
12/12/1998 09:3612/12/1998 14:2412/12/1998 19:1213/12/1998 00:0013/12/1998 04:4813/12/1998 09:3613/12/1998 14:2413/12/1998 19:1214/12/1998 00:00
Time
Pressure Bar & Temperature C
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
Vibration g & Current Leakage mA
Pi(Bar) Pd(Bar) Ti(C) Tm(C) Vibration(g) Cl passive(mA)

Real Examples

Monitoring and Protection
30
40
50
60
70
80
90
100
01/12/1999
14:24
01/12/1999
14:38
01/12/1999
14:52
01/12/1999
15:07
01/12/1999
15:21
01/12/1999
15:36
01/12/1999
15:50
01/12/1999
16:04
01/12/1999
16:19
01/12/1999
16:33
01/12/1999
16:48
Time
Pressure
0
0.5
1
1.5
2
2.5
3
Temperature, Vibration,Current Leakage
Pi(bar) Ti(C) Tm(C) Vibration(g)Cl passive(mA) Real Examples !

Monitoring and Protection
0
50
100
150
200
250
01/12/1999
14:24
01/12/1999
14:38
01/12/1999
14:52
01/12/1999
15:07
01/12/1999
15:21
01/12/1999
15:36
01/12/1999
15:50
01/12/1999
16:04
01/12/1999
16:19
01/12/1999
16:33
01/12/1999
16:48
Time
Pressure
0
0.5
1
1.5
2
2.5
3
Temperature, Vibration,Current Leakage
Pi(bar) Ti(C) Tm(C) Pd(bar) Vibration(g) Cl passive(mA) Real Examples !

MultiSensor Monitoring & Protection
0
50
100
150
200
250
300
350
400
02/11/1999
12:28
02/11/1999
12:43
02/11/1999
12:57
02/11/1999
13:12
02/11/1999
13:26
02/11/1999
13:40
02/11/1999
13:55
02/11/1999
14:09
Time & date
Pressure, Temperature, Flow
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Vibration
Pi(bar)
Pd(bar)
Ti(C)
Tm(C)
Flow(m3/d)
Cl passive(mA)
Vibration(g) Real Examples !

Real ExamplesMonitoring and Protection
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
22-Dec-98 22-Dec-98 23-Dec-98 23-Dec-98 24-Dec-98 24-Dec-98 25-Dec-98 25-Dec-98 26-Dec-98 26-Dec-98
Time
Pressure Bar & Temperature C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Vibration g & Current Leakage mA
Pi(Bar) Pd(Bar) Ti(C) Tm(C) Vibration(g) Cl passive(mA)

Real Examples !Monitoring and protection
0
20
40
60
80
100
120
140
160
10/7/00 00:00:0010/7/00 04:48:0010/7/00 09:36:0010/7/00 14:24:0010/7/00 19:12:0011/7/00 00:00:0011/7/00 04:48:0011/7/00 09:36:00
Date and Time
Pressure (Bar)
0
20
40
60
80
100
120
Temperature (C), Vibration (g*10)
Pi(psi) Pd(psi) Cl passive(mA) Cl active(mA) Ti(C) Tm(C) Vibration(g*100)

Phoenix Monitoring & Protection
50
55
60
65
70
75
80
85
13/11/1997
08:24
13/11/1997
09:36
13/11/1997
10:48
13/11/1997
12:00
13/11/1997
13:12
13/11/1997
14:24
13/11/1997
15:36
13/11/1997
16:48
13/11/1997
18:00
13/11/1997
19:12
Time
Pressure & temperature
0
5000
10000
15000
20000
25000
Pump Flowrate
Pi(bar)Pd(bar) Ti(C)Tm(C) Flow(bfpd)Vibration(g)Cl passive(mA) Real Examples !

Phoenix Monitoring & Protection Log
0
20
40
60
80
100
120
140
160
02/11/1999
06:14
02/11/1999
06:57
02/11/1999
07:40
02/11/1999
08:24
02/11/1999
09:07
02/11/1999
09:50
02/11/1999
10:33
02/11/1999
11:16
02/11/1999
12:00
02/11/1999
12:43
Time
Pressure,temperature
0
0.5
1
1.5
2
2.5
3
Vibration,Current Leakage
Pi(bar)Pd(bar) Ti(C)Tm(C) Vibration(g)Cl passive(mA)
ESP trip Real Examples !

Proactive Analysis ExampleProactive Analysis
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
0.25 125.25 250.25 375.25 500.25 625.25 750.25 875.25 1000.25 1125.25 1250.25 1375.25
Time
Pump Delta Pressure (psia)
0
5
10
15
20
25
30
35
40
Vibration (g)
deltaP(psi) Vibration (g)
Critical Delta P
required to
produce flow for
motor cooling
Estimated
Point of
failure

Pressure Protection
•Intake Pressure
–Low Trip –protect against Pump Off
•Low Fluid Level
•Gas Breakout
•Discharge Pressure
–High Trip –protect against Shut In
•Closed Valves
•Heavy Fluid Slugs
•Delta Pressure
–Low / High Trip –Upthrust / Downthrust
•High Flow Conditions
•Low Flow Conditions

Temperature Protection
•Intake Temperature
–High Trip –protect excessive Intake Temp
•Recirculation
•Motor Winding Temperature
–High Trip –protect excessive Motor Temp
•Low Flow
•High Load
•Anything that will cause the motor to heat

Vibration & Current Leakage
•Vibration
–High Alarm –Submersible Pump Mechanical Damage
•High Solids Production
•Warning of Mechanical Wear
•Resonance ‘Frequency Fine Tuning’
•Current Leakage
–High Alarm –Electrical System Deterioration
•High Pump Heat (MLE)
•Resistance Breakdown
•Phase to Ground Warning

Getting it Right
Motor Cooling & Pump Off Protection

Getting it Wrong
$1.5m lost… and avoidable!