Evaporation, transpiration and evapotranspiration

21,210 views 30 slides Mar 01, 2015
Slide 1
Slide 1 of 30
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30

About This Presentation

Evaporation, transpiration and evapotranspiration


Slide Content

WELCOME

EVAPORATION,
TRANSPIRATION &
EVAPOTRANSPIRATION
ALEX.K.GEORGE
BSF-10-002

Evaporation is the process during which a liquid
changes into gas.
Water changes to vapour through the absorption of
heat
One of the fundamental component of hydrological
cycle
Essential requirements in the process are
1.The source of energy to vaporize the liquid water
(solar or wind)
2.The presence of gradient of concentration between
the evaporating surface and the surrounding air.

Evaporation is defined as a function of the differences
in the vapour pressure of the water and the vapour
pressure of the air.
-Dalton (1882)
E = (es - ed) f(u)
E = evaporation
es = saturation vapour pressure at the temperature of
evaporating surface
ed = saturation vapour pressure at the dew point
temperature of the atmosphere
f(u) = a function of the wind velocity.

1.Degree of saturation of surface
2.Temperature of surface and air
3.Humidity
4.Wind velocity
5.Vegetation cover

PAN EVAPORIMETER
PICHE EVAPORIMETER

Transpiration is the process by which water vapour
leaves the living plant body and enters the atmoshere.
Michel (1978)
It involves continuous flow of water from soil in to
plant and out through stomata (leaves) to the
atmosphere.
Basically an evaporation process.
Transpiration Ratio: The amount of water transpired
by a crop in its growth to produce unit weight of dry
matter.

1.Climate
1.Light intensity
2.Atmospheric vapour pressure
3.Temperature
4.Wind
2.Soil
1.Availability of water
3.Plant factors
1.Extent and efficiency of root system
2.Leaf area
3.Leaf arrangement & structure
4.Stomatal behaviour

A potometer sometimes 
known transpirometer is 
a device used for 
measuring the rate 
 transpiration.
Types:
1.Ganong's Potometer
2.Darwin's Potometer
3.Gaurrea's Potometer
4.farmer potometer
POTOMETER

Evapotranspiration (ET) is the 
quantity of water transpired 
by  the  plants  during  their 
growth  or  retained  in  plant 
tissue,  plus  the  moisture 
evaporated from the surface 
of the soil and the vegetation.
                     Michel (1978)
It accounts for the movement 
of water to the air from 
sources such as the soil, 
canopy interception, and 
water bodies.

POTENTIAL
EVAPOTRANSPIRATION
(PET)
Theoretical amount of moisture
that could be lost from the
surface to the atmosphere if it
were available.
The amount of moisture which,
if available, would be removed
from a given land area by
evapotranspiration.
 Expressed in units of water
depth.

EFFECTIVE
EVAPOTRANSPIRATION
(EET)
Actual amount of water lost
due to evapotranspiration
from the soil along with
actively growing plant or
crop.
depends upon plant and soil
characteristics, and upon the
amount of available water in
the soil.

1.Lysimeter experiment
2.Field experimental plots
3.Soil moisture depletion studies
4.Water balance/budget method
5.Eddy covariance
6.By using US-open pan evaporimeter
7.Energy balance

Lysimeter  is  adevice  in  which  a 
volume  of  soil  planted  with 
vegetation is located in a container 
to isolate it hydrologically from the 
surronding soil.
Having  a  weighing  device  and  a 
drainage  system,  which  permit 
continuous measurement of excess 
water and draining below the root 
zone  and  plant  water  use,  and 
hence evapotranspiration.  
The  amount  of  water  lost  by 
evapotranspiration can be worked 
out  by  calculating  the  difference 
between  the  weight  before  and 
after the precipitation input.

ET = P + (I – D) + S

WHERE,
ET = EVAPOTRANSPIRATION
P = PRECIPITATION
I = IRRIGATION WATER
D = EXCESS WATER DRAINED FROM BOTTOM
S = INCREASE OR DECREASE IN STORAGE OF
SOIL MOISTURE

Direct method of measuring evapotranspiration
fast fluctuations of vertical wind speed are correlated
with fast fluctuations in atmospheric water vapour
density.
Directly estimates the transfer of water vapour
(evapotranspiration) from the land (or canopy)
surface to the atmosphere.

ETo = KC × E pan
where,
 ETo : reference crop
evapotranspiration
 KC : crop coefficient
 E pan : pan evaporation

Formula –Formula –
ETET
= P – Q – = P – Q – ΔΔS - S - ΔΔDD
where,
ΔS= watershed storage variation (mm): S
end
–S
beginning
P = Precipitation (mm)
Q = Stream flow (mm)
ΔD = Seepage out – seepage in (mm)
ET = evaporation and transpiration (mm)

FORMULA-
Rn - G - H = λET
Where,
Rn : Net surface radiation flux density (Wm-2)
G : Ground heat flux density (Wm-2)
H : Sensible heat flux density (Wm-2)
λET : Latent heat flux density (Wm-2)
λ : Latent heat of vaporization of water (Jkg-1)

1.Thornthwaite equation
2.Hargreaves equation
3.Net radiation (R
n
) based method

 e = 1.6(10t/I)a
WHERE:
e = un adjusted potential ET (cm/month)
t = mean air temperature (celcius)
I = annual or seasonal heat index
a = an emperical exponent computed

ET = 0.0023 (Tm + 17.8)(T max – Tmin )1/2.Ra

where,
Tm – daily mean temperature
Ra – extraterrestrial radiation [MJ m
-2
day
-1
].

ET = 0.489 + 0.289 R
n
+ 0.023 T mean
where
R
n
[MJ m
-2
day
-1
] is net radiation.

When a surface evaporates, it looses energy and
cools itself.
It is that cooling that can be observed from space.
 Satellites can map the infrared heat radiated from
Earth, thus enabling to distinguish the cool
surfaces from the warm surfaces.

Satellite map of evapotranspiration of whole world in the season of
winter and summer
winter
summer

Energy availability - The more energy available, the
greater the rate of Evapotranspiration. It takes
about 600 calories of heat energy to change 1 gram of
liquid water into a gas.
 Humidity gradient - The rate and quantity of water
vapour entering into the atmosphere both become
higher in drier air.
Water availability - Evapotranspiration cannot occur
if water is not available.

Wind speed – higher the wind speed, greater will the
rate of evapotranspiration.
Physical attributes of the vegetation - factors as
vegetative cover, plant height, leaf area index and leaf
shape and the reflectivity of plant surfaces can affect
rates of evapotranspiration.
Soil characteristics - Soil characteristics that can
affect evapotranspiration include its heat capacity,
and soil chemistry and albedo.

http://www.eoearth.org/article/Evapotranspiration
http://www.oslpr.org/download/en/2000/0031.pdf
http://www.waterwatch.nl/tools0/sebal.html
Gray, D.M. (ed.) (1970) Handbook on the Principles of
Hydrology, Can. Nat. Com. Int. Hydrol.Decade, Nat. Res.
Council Can., Ottawa.
Tim Davie, Fundamentals of hydrology (Routledge, 2003)
Rana, G. and N. Katerji. 2000. Measurement and estimation
of actual evapotranspiration in the field under
Mediterranean climate.
Michael A.M, 1978. Irrigation Theory and Practice. Vikas
Publishing House Pvt Ltd, New Delhi.

THANK YOU
Tags