Final Report (Balsa Wood Bridge Design)

11,604 views 16 slides Oct 03, 2016
Slide 1
Slide 1 of 16
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16

About This Presentation

No description available for this slideshow.


Slide Content

Final Report 
CEE 4803 Balsa Wood Bridge Design Project 
December 9, 2015 
 
 
Group 3 
Arman Yosal Josia Tannos 
Maya GoldmanSavannah Brooks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table of Contents 
I.Introduction……………………………………………………………………….....page 1 
II.Concept…………………………………………………………………………....page 2­3 
III.Design Methods……………………………………………………………………..page 2 
IV.Construction Techniques………………………………………………………….page 3­7 
V.Testing and Performance………………………………………………………….page 7­8 
VI.Post Test Evaluation……………………………………………………………..page 8­10 
VII.Conclusion………………………………………………………………………....page 10 
VIII.Appendix  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I.Introduction 
Thisreportcoverstheinitialideationanddesign,construction,testingandfailureanalysis                      
ofabalsawoodtrussbridgewithspanoffortyinches,heightofsixinchesandwidthoffour                         
inchesandaweightof135.9grams.UsingSAP2000thethreedimensionalsimplewarrentruss                       
modelwasloadedwithathirtypounddistributedforcetoaccountforafactorofsafetyoftwo.                        
Thebridgewasconstructedbylaminatingtogetherwoodpiecesusingsuperglue,included                      
gussetplatestoactasjoints,andconsistedofaplatformtotakeintoconsiderationhowthe                      
bridgewouldbeloadedduringtesting.Theperformanceofthebridgeexceededexpectationsby                      
holdingtwenty­eightpercentmoreweightthanitwasdesignedforandfailedspectacularlyby                    
multiplelateralcrossbracingsandframememberssplinteringorcrackingatthecenterofthe                      
span.Thefollowingsectionswilldescribeinmoredetailthedesignmethods,construction                     
techniques, testing and performance, and post test evaluation. 
 
II. Concept 
Beforeconstructioncouldcommence,asuitabledesignhadtobechosen.Theprimary                    
goalforthepreliminaryplanswastocreatethemostefficientsystempossible.Thismeansthat                      
thebridgeshouldbeefficientintermsofcostbybeingconservativewithmaterialorders.Itwas                         
alsodesignedtobeefficientintermsofloadingcapabilities.Thismeansthatthebridgewas                       
designedtowithstandthe15poundsofappliedloadrequiredbutnotmuchmoreafterthat.ItThe                      
goalwastocreateabridgethatwouldfailasclosetothisweightrequirementaspossiblewhile                        
stillmeetingthe0.25”maximumdeflectionallowanceusingtheleastamountofmaterial                     
necessary.Inordertodothis,varioustypicaltrussdesignswereexamined.Intheend,asimple                      
warrentrussdesignwaschosenbasedonitsoverallsymmetryandredundancywhichwould                      
allowforuniformselfweightdistributionandeaseofconstruction.Afterthis,handcalculations                   
werecompletedinordertoensureforcesoneachmemberfellbelowtheminimumweight                       
requirement.Theminimumrequirementwas15pounds,however,inordertopreventthe                   
possiblehindrancesandperformanceissuesduringtestingcausedbypossiblehumanerrorsmade                      
duringtheconstructionprocess,asafetyfactoroftwowasappliedtothesystem.Thismeansthat                        
calculationsforforcesoneachmemberwerecalculatedusingaloadof30pounds,insteadof15                      
pounds.Thiswastogivemoreleewayduringperformancetesting.Thesecalculationswere                   
completedforsimplewarrentrussesthatcontainedvaryingamountsoftriangles.Thesedesigns                      
weretheneliminateduntiltwopossiblechoicesremainedbasedontheheightandspan                    
constraintsgivenasprojectrequirements.Theoptionsforthetrusswaseitherafivetriangletruss                      
oraseventriangletruss.Ultimately,thedesignwithseventriangleswaschosenascanbeseenin                         
Figure1a.Finally,thedesignwasputintoSAP2000inordertocreateamodelasclosetoreal                        
worldsystemloadingbehaviorsaspossible.The3Dmodelcreatedinthisprogramwas                     
constructedfortheidealizedcaseofloadingonthecenterlateralmember.Afactorofsafetyof                        
twowasalsoappliedtothismodel.ModelingthedesigninSAP2000gavemoreexactestimates                      
ofhowthestructurewouldreactwhentheloadisapplied,allowingpossiblepointsof                       

weaknessestobedocumentedandstrengthenedduringconstruction,lesseningthechancesof                  
premature system failure.  
 
III. Design Methods 
Anintegralcomponentofthedesignprocessaftertheinitialdesignconcepthadbeen                     
completedwasplanningthecrosssectionalareaofeachmemberinthetruss.Thiswascalculated                    
usingaformofthestressequation, andbalsawoodpropertiesfoundinTable4a.The          P,A=σ              
maximumstresseachmembercanholdis0.68ksiforcompressivestressand1.10ksifortensile                     
stress.TheresultsareshowninTable2a. Fourdifferentcross­sectionalareaswereusedinorder                     
tobuildthetrussbridge.AllofthesecanbeseeninTable5a.Thematerialsorderedthencan                       
seeninTable1a.Withoutconsideringcross­sectionalarea,thedeflectionexceedsthecriteria.                    
Deflectiondecreaseswithincreasedcross­sectionalarea.So,inthefinalmodel,the                   
cross­sectionalareaofsomememberswereincreasedtoreducethedeflection.Forexample,                   
memberHJinthecenterofthetrusswasdesignedtohaveacrosssectionalareaof⅜”by⅜”.                       
This was achieved by laminating four 3/16” pieces together.  
Deflectiontestswerealsocompletedonceallmaterialsorderedhadarrived.Thiswas                 
doneinordertocalculatethepropertiesforeachpiecesincebalsawoodpropertiescanvaryfrom                    
piecetopiece.Aftercompletingthetest,itwasdeterminedthatthecalculatedmodulusof                     
elasticitywastentimesgreaterthanthattheacceptedonepublishedonline.Theseproperties                     
foundthroughtestingwerenotused,however.AlteringthesepropertiesinSAP2000wouldhave                     
alteredtheentiredesignandthematerialsrequired.Asengineers,efficiencyintermsofcostand                      
timeareoftheutmostimportance,bothofwhichwouldhavebeensacrificedshouldthesenew                      
valuesbeenused.Thesepropertiescouldhavebeenused,ifsamplesofthematerialwere                      
providedinordertocompletedeflectiontestsbeforematerialordersgooutorifitwerepossible                       
to reorder materials.  
Anothercomponentofthetrussdesignislateralbracingalongthetopandbottom,inthe                      
shapeofX’s.Theselateralbracingmemberswereplacedtojoineachsectionoftheframeexcept                         
thecenterwheretheloadwasapplied.Theseelementswereaddedtoaccountfortorsiondueto                         
humanerrorduringtheconstructionofthestructure.However,sincethesewereaddedmerelyto                     
addstabilityshouldthebridgebeslightlymisshapenorskewedandsincethecrosssectionalarea                       
ofthesepiecesismoot,thesmallestavailablecross­sectionedpieceswereused.Thiswasdonein                      
ordertolimittheamountofweightaddedtothestructure.Thus,the1/16”piecesofBalsawood                       
wereused.Anotherdesigndetailtoaccountforloadingisthetopcentermemberwheretheload                         
barwasplaced.Inordertocreateastrongplatformtorestthisbaron,threepiecesof3/16”balsa                         
woodwereplacedontopofthecentermembertocreateaplatformjustoverhalfaninchwide.                        
Also,gussetplateswereusedateachofthejointsinordertoincreasestabilityatthesepossible                        
points of weakness. 
 
 

IV. Construction Techniques 
Firstthematerialsweregatheredandcountedtoensureallnecessaryitemswere                     
purchasedandcollected.SeeTable1a.oftheappendixformaterialorder.T­squares(metal                     
rulersshapedlikeaT)andX­Actokniveswereusedtocutallthememberpiecestothecorrect                         
lengthsbasedonthedimensionsofthebridgedesignseeninFigure1.Theamountofeachpiece                        
withspecifiedlengthandcross­sectionalareaweretabulatedinTable3a.andusedduringthis                     
cuttingprocesstokeeptrackofhowmanyofeachkindwereneeded.Inordertokeepthecuts                      
consistent,themembersweremadeslightlylongersothatthelengthwasamarkontheruleras                      
opposed to in between two marks. 
 
a.Front view of truss 
 
(b) Side view of truss 
Figure 1. Dimensions of truss members based on design concept and methods and minimum 
requirements of  36” length by 4” width by 5” height 
 
Afterallthepieceswerecut,theywerelaminatedtogethertomakethenecessary                    
configuration.Forexample,tomakememberAB¼”X¼”,four⅛”piecesoflength5.7”were                     
gluedtogether.Thiswasdoneforeverymembertwicetocreatethetwoframesandthesewere                      
tapedtogetherandlabeledforeasyaccesswhenconnectingallthepiecestogetheratalatertime.                       
Nextthegussetplateswerecutto1.5”X1”exceptattheconnectionjointsF,H,andJwherethe                         
dimensionswerecutto1.5”X1.5”toaccountforthelargermembers.Twogussetplatesoneither                       
sideoftheconnectionandfortwoframesresultedincuttingsixtytotal.Finally,smallpieces                       
werecutandgluedtotheendsofeachmemberwhichwasconnectedtoamemberthickerthan                        
itself, so that at the connection all members were touching the gusset plates. 

 
Image 1. Laminated piece on small member (red circle) to increase height (green line) and create 
connection to gusset plate 
Beforeconstructionallthepieceswerelaidoutintheirproperpositionsandtherewasa                    
discussionabouthowtoformtheconnectionssothattheproperangleforeachtrianglewas                     
maintained.Ahand­drawnsketchwasusedasatemplate,andthepieceswereplacedonthe                     
template.Thefirstcorner,A,wasthestartingpoint.Eachconnectionwasformedbyglueingthe                      
memberstothegussetplatesothetrianglematchedthetemplate,andtheframewasmovedeach                       
timetoformthenexttriangle.Thismethod,however,wasflawedsincethetemplatedidnottake                      
intoaccountthethicknessofthemembersortheactualconnectionsize,norwerethelines                     
perfectlystraight.Itwasalsodifficulttogaugethelinearityoftheoverallstructureasitgrew                       
becauseeachtrianglewasformedrelativetothetemplateinsteadoftheoverallframe.Tocombat                        
mostoftheseissues,aCADdrawingwasprintedonaplottertoactualsize,whichreplacedthe                         
hand­drawn template. 
 
Image 2. Laminated members organized in shape of truss 

 
Image 3. Hand drawn template method Image 4. CAD template method 
Whilethefirsttrussframewasbeingfinished,thenextframewascreatedbyaligningthepieces                        
ontopoftheexistingframeandthenglueingthememberstothegussetplate,startingatthe                         
cornerandworkinglefttorighttowardstheothercorner.Thismethodwaschosenforschedule                      
efficiencyandbecauseafterthefirstframewascompleteitwasmoreimportantforthetwosides                     
to be exact copies of each other than for the new frame to follow the template (symmetry). 
 
Image 5. Second truss built on top of first truss 

Next,thetwoframeshadtobeconnectedwithlateralbracingandcross­bracing.Inorder                    
forthetwoframestoremainverticalandatthecorrectdistanceapartwhenglueingthelateral                        
bracingmemberstoeitherside,tonguedepressorsholepunchedateitherendandclamped                     
together with a screw and nuts were secured along the length of the bridge as seen in Image 6.  
 
Image 6. Tongue depressor system used to stabilize truss frames when adding lateral bracing 
Oncegroupmembersconfirmedthewidthbetweenframesatbothendsofbridgewereequaland                       
theframeswereperpendiculartothetable(notleaningorrotating),alateralmemberwasglued                      
oneitherendandplacedbetweentheframes,withagussetplateatthetopofthe⅛”members.                         
The 3/16” members were simply glued to the frame without gusset plates. 
   
Image 7. Gusset plates on ⅛” lateral members    Image 8. Connection for 3/16” members 
Thecross­bracingpiecesofsize1/16”werecutandgluedonanindividualbasisafterthewhole                       
bridge was built. These pieces were glued to the truss frame without gusset plates. 

 
Image 9. Cross­bracing top view 
 
V. Testing and Performance 
First,thesupportsofthebridgeateachendwereplacedonthetable.Thesupportsincontact                        
withthetablemustnotexceed0.5inchesaccordingtoprojectspecifications.Oneshimwasused                     
ontherightbacksupport(basedonImage10configuration).Thebridgewastestedbyplacinga                        
steelmetalbarontheplatformatthetopcenterofthebridge.Then,achainwasusedtoliftthe                          
bucketfilledwithloads.Theloadingstartedwithtenpoundsandweightwasaddeduntilthe                       
bridge failed. The configuration of the bridge and the loading is shown in Image 10.  
 
Image 10. Loading the bridge 

Thebridgewasexpectedtohaveaminimumheightoffiveinches,minimumwidthoffour                       
inchesandminimumlengthof36inches.AsshowninTable1,thebridgemettheheight,width                          
andlengthrequirements.Anotherspecificationwasthatthebridgewasexpectedtodeflectno                     
morethan0.25inches.Whenaloadof15poundswasappliedatthecenterofthebridge,the                         
deflection was almost zero.  
Table 1. Measured values during testing 
Height  6 in 
Width  4 in 
Length  40 in 
Weight of bridge  135.6 g 
Weight of load at failure  53.5 lb 
  
VI. Post Test Evaluation 
Image11showsthefailedsegmentofthebridge.Thebridgefailedataloadof53.5lb.It                         
canbeseenthatthebridgeunderwentshearfailureatthegussetplate.Image12andImage13                         
showtheshearfailureobservedonthebridge.Therewerenomembersthatbrokebecauseof                       
axialforces.Thisshowsthatthemembercross­sectionalareaislargeenoughtowithstandthe                     
axialstresscausedbytheload.Thelateralmembersmostlyremainedintactacrossthespan.This                       
showsthatthelateralmembersusedwerestrongenoughtowithstandthetorsionalloaddueto                      
theunsymmetricalshapeandloadoffset.Itisshownthatthewoodsplinteredattheconnectionat                       
point H and I. The member was not able to withstand the shear force caused by the load. 
Thegoalofthisprojectwastodesignabridgethatcanwithstand15lbloadlocatedatthe                        
midspanofthebridge.Thisdesignwascreatedbyaccountingforafactorofsafetyoftwo.The                        
cross­sectionalareaofthememberswerecalculatedsothatthedeflectionisnotmorethan0.25”.                    
Basedonthetestresult,theultimatestrengthandelasticmodulususedintheSAPanalysiswere                       
lowerthantheactualvalue.Inthedesign,theamountofmaterialwasaddedtomeetthe                       
deflectionrequirement.Atfirst,byusingsmallercross­sectionalareaforeachmember,the                  
designedwasabletoholdupto30lbs.However,theinitialdesignshowedthatthedeflection                      
was0.70inches,whichismorethanthemaximumdeflection.Inordertoreducethedeflection,                      
themembersmusthavelargercross­sectionalareabecausethedeflectionoftrussisinversely                    
proportionaltothecross­sectionalareaofthemembers.Duringthetest,thebridgedoesnot                   
deflectsignificantly(thedeflectionisclosetozero)anditcanbeconcludedthatthebridgewas                     
overdesigned.Thisoverdesignwasduetolackofunderstandingofthebalsawoodproperties.                     
Thebalsawoodusedinthisprojectwerestifferthantheassumedelasticmodulusandthereforea                        
moreefficientdesigncouldhavebeenused.Moreover,byincreasingthecross­sectionalareaof                    
each member in the truss, the weight of the structure also increased. 

Thespanandheightofthisbridgeexceedstheminimumrequirementspecified.This                   
trussbridgespanned40incheswhiletherequirementonlyspecifiedaspanof36inches.This                       
trussbridgehadaheightof6incheswhiletherequirementonlyspecifiedaheightof5inches.                          
Thisextraspanandheightinducedmoreweightinthebridge.Thishappenedbecausethedesign                       
plandidnotaccountforextralengthintheconnectionandthethicknessofthemember.This                      
additional length and weight increase the weight of the bridge. 
 
Image 11. Failed Segment of the Bridge 
 
Image 12. Failed Gusset Plate 
 
 

 
Image 13. Shear Failure at the Horizontal Component. 
 
VII. Conclusion 
Thisdesignwasabletowithstandfifteenpoundsofloadlocatedatthemidspanofthe                      
bridge.Inthedesignprocess,afactorofsafetyoftwowasusedtoaccountforhumanerrors,                         
defectsinmaterialsandotherfactorsthatmayaffecttheperformanceofthebridge.Afterthe                     
test,thebridgewasabletocarry53.5lbbeforefailure.Moreover,whenaloadoffifteenpounds                        
wasapplied,thebridgedidnotdeflectsignificantly(thedeflectionwasalmostzero).These                      
indicatethatthebridgewasoverdesignedbecauseitcouldwithstandmorethantheexpected                     
loadandtheactualdeflectionwassmallerthantheexpecteddeflection.Thisiscausedby                     
underestimationofelasticmodulusofthebalsawood.Theexpectedlengthandheightofthe                     
bridgewasthirty­sixinchesandfiveinchesrespectively.However,theactuallengthwasforty                     
inchesandtheactualheightwassixinchesrespectively.Thisiscausedbythethicknessofthe                       
materialandthespacebetweenmembersattheconnectionsthatwerenotconsideredinthe                    
designprocess.Thisadditionallengthandheightincreasedtheweightofthebridge.Overall,this                       
designcouldbeimprovedbyusingamoreaccurateelasticmodulusandaccountingfor                      
additional length and height at the connection as well as the thickness of the members. 
 
 
 
 
 
 
   

VIII. Appendix 
 
Table 1a. Material order for balsa wood 
Size  Amount 
1/16”  5 
⅛”  31 
3/16”  4 
Plate  1 
 
Table 2a. The force in each member with factor of safety of two based on SAP2000 analysis 
Members Force (lb) 
Direction of 
Force 
Minimum Cross­Sectional Area 
(in 


Configuration of 
Member 
AB  ­8.46 Compression  1.24E­02  1/4" x 1/4" 
AC  3.9  Tension  3.54E­03  1/4" x 1/4" 
BC  8.46  Tension  7.66E­03  1/8" x 1/8" 
BD  ­7.8 Compression  1.14E­02  1/4" x 1/4" 
CD  ­8.46 Compression  1.24E­02  1/4" x 1/4" 
CE  11.72  Tension  1.06E­02  1/4" x 1/4" 
DE  8.46  Tension  7.66E­03  1/8" x 1/8" 
DF  ­15.62 Compression  2.29E­02  1/4" x 1/4" 
EF  ­8.46 Compression  1.24E­02  1/4" x 1/4" 
EG  19.52  Tension  1.77E­02  1/4" x 1/4" 
FG  8.46  Tension  7.66E­03  1/4" x 1/8" 
FH  ­23.42 Compression  3.43E­02  3/8" x 3/8" 
GH  ­8.46 Compression  1.24E­02  1/4" x 1/4" 
GI  27.32  Tension  2.48E­02  1/4" x 1/4" 
HI  ­8.46 Compression  1.24E­02  1/4" x 1/4" 

HJ  ­23.42 Compression  3.43E­02  3/8" x 3/8" 
IJ  8.46  Tension  7.66E­03  1/4" x 1/8" 
IK  19.52  Tension  1.77E­02  1/4" x 1/4" 
JK  ­8.46 Compression  1.24E­02  1/4" x 1/4" 
JL  ­15.62 Compression  2.29E­02  1/4" x 1/4" 
KL  8.46  Tension  7.66E­03  1/8" x 1/8" 
KM  11.72  Tension  1.06E­02  1/4" x 1/4" 
LM  ­8.46 Compression  1.24E­02  1/4" x 1/4" 
LN  ­7.8 Compression  1.14E­02  1/4" x 1/4" 
MN  8.46  Tension  7.66E­03  1/8" x 1/8" 
MO  3.9  Tension  3.54E­03  1/4" x 1/4" 
NO  ­8.46 Compression  1.24E­02  1/4" x 1/4" 
 
Table 3a. Length, cross­sectional width, and number of pieces to be laminated for each member 
Member Label Wood Cross­Section 
Size (in) 
Length (in)  Amount 
AB 
1/8  5.7  4 
AC 
1/8  5.2  4 
BC 
1/8  5.7  1 
BD 
1/8  5.2  4 
CD 
1/8  5.7  4 
CE 
1/8  5.2  4 
DE 
1/8  5.7  1 
DF 
1/8  5.2  4 
EF 
1/8  5.7  4 
EG 
1/8  5.2  4 

FG 
1/8  5.7  2 
FH 
3/16  5.2  4 
GH 
1/8  5.7  4 
GI 
1/8  5.2  4 
HI 
1/8  5.7  4 
HJ 
3/16  5.2  4 
IJ 
1/8  5.7  2 
IK 
1/8  5.2  4 
JK 
1/8  5.7  4 
JL 
1/8  5.2  4 
KL 
1/8  5.7  1 
KM 
1/8  5.2  4 
LM 
1/8  5.7  4 
LN 
1/8  5.2  4 
MN 
1/8  5.7  1 
MO 
1/8  5.2  4 
NO 
1/8  5.7  4 
AA' 
1/8  4.2  1 
BB' 
1/8  4.2  1 
CC' 
1/8  4.2  1 
DD' 
1/8  4.2  1 
EE' 
1/8  4.2  1 
FF' 
3/16  4.2  1 
GG' 
3/16  4.2  1 
HH' 
3/16  4.2  3 

II' 
3/16  4.2 

JJ' 
3/16  4.2 

KK' 
1/8  4.2 

LL' 
1/8  4.2 

MM' 
1/8  4.2 

NN' 
1/8  4.2 

OO' 
1/8  4.2 

*Table 5a. simplifies this data to show totals for each cross sectional size 
 
Table 4a. Balsa wood properties based on flexural test 
Trial  Length 
(cm) 
Width 
(cm) 
Moment of 
Inertia 
(cm^4) 
Load 
(N) 
Length 
(cm) 
Deflecti
on (cm) 
Elastic 
Modulus 
(GPa) 
1  0.318  0.318  0.001  0.196 25.000 1.800 6.704 
2  0.318  0.318  0.001  0.196 25.000 2.200 5.485 
3  0.159  0.159  0.000  0.098 10.000 1.000 6.178 
4  0.159  0.159  0.000  0.098 10.000 1.500 4.119 
 
 
Table 5a. Cross sectional area of Members 
Cross Sectional Size  Number of Members  Pieces Laminated  
1/4" x 1/4"  38  4 x (1/8" balsa wood)  
1/8" x 1/8"  8  4 x (1/16" balsa wood)  
3/8" x 3/8"  4  4 x (3/16" balsa wood)  
1/4" x 1/8"  4  2 x (1/8" balsa wood)  
 
Tags