Final Report
CEE 4803 Balsa Wood Bridge Design Project
December 9, 2015
Group 3
Arman Yosal Josia Tannos
Maya GoldmanSavannah Brooks
Table of Contents
I.Introduction……………………………………………………………………….....page 1
II.Concept…………………………………………………………………………....page 23
III.Design Methods……………………………………………………………………..page 2
IV.Construction Techniques………………………………………………………….page 37
V.Testing and Performance………………………………………………………….page 78
VI.Post Test Evaluation……………………………………………………………..page 810
VII.Conclusion………………………………………………………………………....page 10
VIII.Appendix
I.Introduction
Thisreportcoverstheinitialideationanddesign,construction,testingandfailureanalysis
ofabalsawoodtrussbridgewithspanoffortyinches,heightofsixinchesandwidthoffour
inchesandaweightof135.9grams.UsingSAP2000thethreedimensionalsimplewarrentruss
modelwasloadedwithathirtypounddistributedforcetoaccountforafactorofsafetyoftwo.
Thebridgewasconstructedbylaminatingtogetherwoodpiecesusingsuperglue,included
gussetplatestoactasjoints,andconsistedofaplatformtotakeintoconsiderationhowthe
bridgewouldbeloadedduringtesting.Theperformanceofthebridgeexceededexpectationsby
holdingtwentyeightpercentmoreweightthanitwasdesignedforandfailedspectacularlyby
multiplelateralcrossbracingsandframememberssplinteringorcrackingatthecenterofthe
span.Thefollowingsectionswilldescribeinmoredetailthedesignmethods,construction
techniques, testing and performance, and post test evaluation.
weaknessestobedocumentedandstrengthenedduringconstruction,lesseningthechancesof
premature system failure.
III. Design Methods
Anintegralcomponentofthedesignprocessaftertheinitialdesignconcepthadbeen
completedwasplanningthecrosssectionalareaofeachmemberinthetruss.Thiswascalculated
usingaformofthestressequation, andbalsawoodpropertiesfoundinTable4a.The P,A=σ
maximumstresseachmembercanholdis0.68ksiforcompressivestressand1.10ksifortensile
stress.TheresultsareshowninTable2a. Fourdifferentcrosssectionalareaswereusedinorder
tobuildthetrussbridge.AllofthesecanbeseeninTable5a.Thematerialsorderedthencan
seeninTable1a.Withoutconsideringcrosssectionalarea,thedeflectionexceedsthecriteria.
Deflectiondecreaseswithincreasedcrosssectionalarea.So,inthefinalmodel,the
crosssectionalareaofsomememberswereincreasedtoreducethedeflection.Forexample,
memberHJinthecenterofthetrusswasdesignedtohaveacrosssectionalareaof⅜”by⅜”.
This was achieved by laminating four 3/16” pieces together.
Deflectiontestswerealsocompletedonceallmaterialsorderedhadarrived.Thiswas
doneinordertocalculatethepropertiesforeachpiecesincebalsawoodpropertiescanvaryfrom
piecetopiece.Aftercompletingthetest,itwasdeterminedthatthecalculatedmodulusof
elasticitywastentimesgreaterthanthattheacceptedonepublishedonline.Theseproperties
foundthroughtestingwerenotused,however.AlteringthesepropertiesinSAP2000wouldhave
alteredtheentiredesignandthematerialsrequired.Asengineers,efficiencyintermsofcostand
timeareoftheutmostimportance,bothofwhichwouldhavebeensacrificedshouldthesenew
valuesbeenused.Thesepropertiescouldhavebeenused,ifsamplesofthematerialwere
providedinordertocompletedeflectiontestsbeforematerialordersgooutorifitwerepossible
to reorder materials.
Anothercomponentofthetrussdesignislateralbracingalongthetopandbottom,inthe
shapeofX’s.Theselateralbracingmemberswereplacedtojoineachsectionoftheframeexcept
thecenterwheretheloadwasapplied.Theseelementswereaddedtoaccountfortorsiondueto
humanerrorduringtheconstructionofthestructure.However,sincethesewereaddedmerelyto
addstabilityshouldthebridgebeslightlymisshapenorskewedandsincethecrosssectionalarea
ofthesepiecesismoot,thesmallestavailablecrosssectionedpieceswereused.Thiswasdonein
ordertolimittheamountofweightaddedtothestructure.Thus,the1/16”piecesofBalsawood
wereused.Anotherdesigndetailtoaccountforloadingisthetopcentermemberwheretheload
barwasplaced.Inordertocreateastrongplatformtorestthisbaron,threepiecesof3/16”balsa
woodwereplacedontopofthecentermembertocreateaplatformjustoverhalfaninchwide.
Also,gussetplateswereusedateachofthejointsinordertoincreasestabilityatthesepossible
points of weakness.
IV. Construction Techniques
Firstthematerialsweregatheredandcountedtoensureallnecessaryitemswere
purchasedandcollected.SeeTable1a.oftheappendixformaterialorder.Tsquares(metal
rulersshapedlikeaT)andXActokniveswereusedtocutallthememberpiecestothecorrect
lengthsbasedonthedimensionsofthebridgedesignseeninFigure1.Theamountofeachpiece
withspecifiedlengthandcrosssectionalareaweretabulatedinTable3a.andusedduringthis
cuttingprocesstokeeptrackofhowmanyofeachkindwereneeded.Inordertokeepthecuts
consistent,themembersweremadeslightlylongersothatthelengthwasamarkontheruleras
opposed to in between two marks.
a.Front view of truss
(b) Side view of truss
Figure 1. Dimensions of truss members based on design concept and methods and minimum
requirements of 36” length by 4” width by 5” height
Afterallthepieceswerecut,theywerelaminatedtogethertomakethenecessary
configuration.Forexample,tomakememberAB¼”X¼”,four⅛”piecesoflength5.7”were
gluedtogether.Thiswasdoneforeverymembertwicetocreatethetwoframesandthesewere
tapedtogetherandlabeledforeasyaccesswhenconnectingallthepiecestogetheratalatertime.
Nextthegussetplateswerecutto1.5”X1”exceptattheconnectionjointsF,H,andJwherethe
dimensionswerecutto1.5”X1.5”toaccountforthelargermembers.Twogussetplatesoneither
sideoftheconnectionandfortwoframesresultedincuttingsixtytotal.Finally,smallpieces
werecutandgluedtotheendsofeachmemberwhichwasconnectedtoamemberthickerthan
itself, so that at the connection all members were touching the gusset plates.
Image 1. Laminated piece on small member (red circle) to increase height (green line) and create
connection to gusset plate
Beforeconstructionallthepieceswerelaidoutintheirproperpositionsandtherewasa
discussionabouthowtoformtheconnectionssothattheproperangleforeachtrianglewas
maintained.Ahanddrawnsketchwasusedasatemplate,andthepieceswereplacedonthe
template.Thefirstcorner,A,wasthestartingpoint.Eachconnectionwasformedbyglueingthe
memberstothegussetplatesothetrianglematchedthetemplate,andtheframewasmovedeach
timetoformthenexttriangle.Thismethod,however,wasflawedsincethetemplatedidnottake
intoaccountthethicknessofthemembersortheactualconnectionsize,norwerethelines
perfectlystraight.Itwasalsodifficulttogaugethelinearityoftheoverallstructureasitgrew
becauseeachtrianglewasformedrelativetothetemplateinsteadoftheoverallframe.Tocombat
mostoftheseissues,aCADdrawingwasprintedonaplottertoactualsize,whichreplacedthe
handdrawn template.
Image 2. Laminated members organized in shape of truss
Image 3. Hand drawn template method Image 4. CAD template method
Whilethefirsttrussframewasbeingfinished,thenextframewascreatedbyaligningthepieces
ontopoftheexistingframeandthenglueingthememberstothegussetplate,startingatthe
cornerandworkinglefttorighttowardstheothercorner.Thismethodwaschosenforschedule
efficiencyandbecauseafterthefirstframewascompleteitwasmoreimportantforthetwosides
to be exact copies of each other than for the new frame to follow the template (symmetry).
Image 5. Second truss built on top of first truss
Next,thetwoframeshadtobeconnectedwithlateralbracingandcrossbracing.Inorder
forthetwoframestoremainverticalandatthecorrectdistanceapartwhenglueingthelateral
bracingmemberstoeitherside,tonguedepressorsholepunchedateitherendandclamped
together with a screw and nuts were secured along the length of the bridge as seen in Image 6.
Image 6. Tongue depressor system used to stabilize truss frames when adding lateral bracing
Oncegroupmembersconfirmedthewidthbetweenframesatbothendsofbridgewereequaland
theframeswereperpendiculartothetable(notleaningorrotating),alateralmemberwasglued
oneitherendandplacedbetweentheframes,withagussetplateatthetopofthe⅛”members.
The 3/16” members were simply glued to the frame without gusset plates.
Image 7. Gusset plates on ⅛” lateral members Image 8. Connection for 3/16” members
Thecrossbracingpiecesofsize1/16”werecutandgluedonanindividualbasisafterthewhole
bridge was built. These pieces were glued to the truss frame without gusset plates.
Image 9. Crossbracing top view
V. Testing and Performance
First,thesupportsofthebridgeateachendwereplacedonthetable.Thesupportsincontact
withthetablemustnotexceed0.5inchesaccordingtoprojectspecifications.Oneshimwasused
ontherightbacksupport(basedonImage10configuration).Thebridgewastestedbyplacinga
steelmetalbarontheplatformatthetopcenterofthebridge.Then,achainwasusedtoliftthe
bucketfilledwithloads.Theloadingstartedwithtenpoundsandweightwasaddeduntilthe
bridge failed. The configuration of the bridge and the loading is shown in Image 10.
Image 10. Loading the bridge
Thebridgewasexpectedtohaveaminimumheightoffiveinches,minimumwidthoffour
inchesandminimumlengthof36inches.AsshowninTable1,thebridgemettheheight,width
andlengthrequirements.Anotherspecificationwasthatthebridgewasexpectedtodeflectno
morethan0.25inches.Whenaloadof15poundswasappliedatthecenterofthebridge,the
deflection was almost zero.
Table 1. Measured values during testing
Height 6 in
Width 4 in
Length 40 in
Weight of bridge 135.6 g
Weight of load at failure 53.5 lb
VI. Post Test Evaluation
Image11showsthefailedsegmentofthebridge.Thebridgefailedataloadof53.5lb.It
canbeseenthatthebridgeunderwentshearfailureatthegussetplate.Image12andImage13
showtheshearfailureobservedonthebridge.Therewerenomembersthatbrokebecauseof
axialforces.Thisshowsthatthemembercrosssectionalareaislargeenoughtowithstandthe
axialstresscausedbytheload.Thelateralmembersmostlyremainedintactacrossthespan.This
showsthatthelateralmembersusedwerestrongenoughtowithstandthetorsionalloaddueto
theunsymmetricalshapeandloadoffset.Itisshownthatthewoodsplinteredattheconnectionat
point H and I. The member was not able to withstand the shear force caused by the load.
Thegoalofthisprojectwastodesignabridgethatcanwithstand15lbloadlocatedatthe
midspanofthebridge.Thisdesignwascreatedbyaccountingforafactorofsafetyoftwo.The
crosssectionalareaofthememberswerecalculatedsothatthedeflectionisnotmorethan0.25”.
Basedonthetestresult,theultimatestrengthandelasticmodulususedintheSAPanalysiswere
lowerthantheactualvalue.Inthedesign,theamountofmaterialwasaddedtomeetthe
deflectionrequirement.Atfirst,byusingsmallercrosssectionalareaforeachmember,the
designedwasabletoholdupto30lbs.However,theinitialdesignshowedthatthedeflection
was0.70inches,whichismorethanthemaximumdeflection.Inordertoreducethedeflection,
themembersmusthavelargercrosssectionalareabecausethedeflectionoftrussisinversely
proportionaltothecrosssectionalareaofthemembers.Duringthetest,thebridgedoesnot
deflectsignificantly(thedeflectionisclosetozero)anditcanbeconcludedthatthebridgewas
overdesigned.Thisoverdesignwasduetolackofunderstandingofthebalsawoodproperties.
Thebalsawoodusedinthisprojectwerestifferthantheassumedelasticmodulusandthereforea
moreefficientdesigncouldhavebeenused.Moreover,byincreasingthecrosssectionalareaof
each member in the truss, the weight of the structure also increased.
Thespanandheightofthisbridgeexceedstheminimumrequirementspecified.This
trussbridgespanned40incheswhiletherequirementonlyspecifiedaspanof36inches.This
trussbridgehadaheightof6incheswhiletherequirementonlyspecifiedaheightof5inches.
Thisextraspanandheightinducedmoreweightinthebridge.Thishappenedbecausethedesign
plandidnotaccountforextralengthintheconnectionandthethicknessofthemember.This
additional length and weight increase the weight of the bridge.
Image 11. Failed Segment of the Bridge
Image 12. Failed Gusset Plate
Image 13. Shear Failure at the Horizontal Component.
VII. Conclusion
Thisdesignwasabletowithstandfifteenpoundsofloadlocatedatthemidspanofthe
bridge.Inthedesignprocess,afactorofsafetyoftwowasusedtoaccountforhumanerrors,
defectsinmaterialsandotherfactorsthatmayaffecttheperformanceofthebridge.Afterthe
test,thebridgewasabletocarry53.5lbbeforefailure.Moreover,whenaloadoffifteenpounds
wasapplied,thebridgedidnotdeflectsignificantly(thedeflectionwasalmostzero).These
indicatethatthebridgewasoverdesignedbecauseitcouldwithstandmorethantheexpected
loadandtheactualdeflectionwassmallerthantheexpecteddeflection.Thisiscausedby
underestimationofelasticmodulusofthebalsawood.Theexpectedlengthandheightofthe
bridgewasthirtysixinchesandfiveinchesrespectively.However,theactuallengthwasforty
inchesandtheactualheightwassixinchesrespectively.Thisiscausedbythethicknessofthe
materialandthespacebetweenmembersattheconnectionsthatwerenotconsideredinthe
designprocess.Thisadditionallengthandheightincreasedtheweightofthebridge.Overall,this
designcouldbeimprovedbyusingamoreaccurateelasticmodulusandaccountingfor
additional length and height at the connection as well as the thickness of the members.
VIII. Appendix
Table 1a. Material order for balsa wood
Size Amount
1/16” 5
⅛” 31
3/16” 4
Plate 1
Table 2a. The force in each member with factor of safety of two based on SAP2000 analysis
Members Force (lb)
Direction of
Force
Minimum CrossSectional Area
(in
2
)
Configuration of
Member
AB 8.46 Compression 1.24E02 1/4" x 1/4"
AC 3.9 Tension 3.54E03 1/4" x 1/4"
BC 8.46 Tension 7.66E03 1/8" x 1/8"
BD 7.8 Compression 1.14E02 1/4" x 1/4"
CD 8.46 Compression 1.24E02 1/4" x 1/4"
CE 11.72 Tension 1.06E02 1/4" x 1/4"
DE 8.46 Tension 7.66E03 1/8" x 1/8"
DF 15.62 Compression 2.29E02 1/4" x 1/4"
EF 8.46 Compression 1.24E02 1/4" x 1/4"
EG 19.52 Tension 1.77E02 1/4" x 1/4"
FG 8.46 Tension 7.66E03 1/4" x 1/8"
FH 23.42 Compression 3.43E02 3/8" x 3/8"
GH 8.46 Compression 1.24E02 1/4" x 1/4"
GI 27.32 Tension 2.48E02 1/4" x 1/4"
HI 8.46 Compression 1.24E02 1/4" x 1/4"
HJ 23.42 Compression 3.43E02 3/8" x 3/8"
IJ 8.46 Tension 7.66E03 1/4" x 1/8"
IK 19.52 Tension 1.77E02 1/4" x 1/4"
JK 8.46 Compression 1.24E02 1/4" x 1/4"
JL 15.62 Compression 2.29E02 1/4" x 1/4"
KL 8.46 Tension 7.66E03 1/8" x 1/8"
KM 11.72 Tension 1.06E02 1/4" x 1/4"
LM 8.46 Compression 1.24E02 1/4" x 1/4"
LN 7.8 Compression 1.14E02 1/4" x 1/4"
MN 8.46 Tension 7.66E03 1/8" x 1/8"
MO 3.9 Tension 3.54E03 1/4" x 1/4"
NO 8.46 Compression 1.24E02 1/4" x 1/4"
Table 3a. Length, crosssectional width, and number of pieces to be laminated for each member
Member Label Wood CrossSection
Size (in)
Length (in) Amount
AB
1/8 5.7 4
AC
1/8 5.2 4
BC
1/8 5.7 1
BD
1/8 5.2 4
CD
1/8 5.7 4
CE
1/8 5.2 4
DE
1/8 5.7 1
DF
1/8 5.2 4
EF
1/8 5.7 4
EG
1/8 5.2 4
II'
3/16 4.2
1
JJ'
3/16 4.2
1
KK'
1/8 4.2
1
LL'
1/8 4.2
1
MM'
1/8 4.2
1
NN'
1/8 4.2
1
OO'
1/8 4.2
1
*Table 5a. simplifies this data to show totals for each cross sectional size
Table 4a. Balsa wood properties based on flexural test
Trial Length
(cm)
Width
(cm)
Moment of
Inertia
(cm^4)
Load
(N)
Length
(cm)
Deflecti
on (cm)
Elastic
Modulus
(GPa)
1 0.318 0.318 0.001 0.196 25.000 1.800 6.704
2 0.318 0.318 0.001 0.196 25.000 2.200 5.485
3 0.159 0.159 0.000 0.098 10.000 1.000 6.178
4 0.159 0.159 0.000 0.098 10.000 1.500 4.119
Table 5a. Cross sectional area of Members
Cross Sectional Size Number of Members Pieces Laminated
1/4" x 1/4" 38 4 x (1/8" balsa wood)
1/8" x 1/8" 8 4 x (1/16" balsa wood)
3/8" x 3/8" 4 4 x (3/16" balsa wood)
1/4" x 1/8" 4 2 x (1/8" balsa wood)