Fluid mechanics Fluid mechanics Fluid mechanics Fluid mechanics

englashi 27 views 18 slides Aug 31, 2025
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

Fluid mechanics Fluid mechanics Fluid mechanics


Slide Content

CE1120-Elementary Fluid Mechanics
and Thermodynamics
Dr. LashithaRathnayake
Department of Civil Engineering,
University of Peradeniya,
[email protected]
Lecture4
1

Problem2
2
??????
5
=300 ????????????
??????
5
=200 ????????????
??????=85 ??????/??????
1 2
CS
1
CS
2
CS
3
CV
A horizontalpipeline carrying oil of ρ = 685 kg/m
3
at Q = 85 l/s reduces in diameter using
a standard, symmetrical taper section. Given, gauge pressures, p
1
= 10 kPa, p
2
= 8 kPa, and
D
1
= 300 mm, D
2
= 200 mm, find the force exerted by oil on the reducer section, assuming
steady 1D flow.
Select so that fluid crosses control
surfaces at right angles
x
y

Forces
•Body forces:
•Flow is horizontal, so weight of fluid acting in z-direction.•Surface forces:
•CS1: p1 = const, pressure force = p
1
A
1

•CS2: p2 = const, pressure force = p
2
A
2

•CS3: pressure (p
w
) and shear (τ
w
) forces (unknown)
•Let F= force exerted by reducer section on the fluid in CV(due to Pressure and shear)
3
CS
1
CS
2
CS
3
CV

•No change of momentum in y-direction, so we expect F to act along x-axis.
•Applying steady flow force-mom eqnfor fluid body in CV
4
∑??????=??????̇
???
−??????̇
??
∑??????=????????????(??????
6
-??????
5
)
→ ??????
5
??????
5
−??????
6
??????
6
−??????=????????????(??????
6
-??????
5
)

Problem 3
•A vertical pipeline with a reducer section
and flow downwards (85 l/s).
•p
1
= 10 kPa, p
2
= 8 kPa, ρ = 685 kg/m
3
•D
1
= 300 mm, D
2
= 200 mm,
•Assume volume of the reducer section is 5
liters
5
??????
5
=300 ????????????
??????
5
=200 ????????????
??????=85 ??????/??????
1
2
CS
1
CS
2
CS
3
CV
W

6
Elemental CV

7
→?F
q
=??????Q(V
6?
−V
5?
)
−??????????????????+??????A+
??
6
dA− ??????????????????????????????=??????????????????(??????+????????????−??????)
????????????????????????=????????????/????????????
Force due to weight
= ??????????????????????????????????????????????????????= ??????????????????????????????
Subtract uniform value p
from all sides and apply
force-mom eqnin
streamwise (s) direction
??????
??????
??????
??????+????????????
??????+????????????
??????+????????????
1
2
??????
????
=??????+????????????/2??????=0 (????????????????????????????????????????????????)
Elemental CV

8
→?F
v
=??????Q(V
6?
−V
5?
)
????????????
????????????
+
??????????????????
??????
+ ???????????? =0Dividing by ρg,
????????????+????????????????????????+????????????????????????=0
Euler’s Equation
−????????????.??????− ??????????????????????????????=??????????????????????????????Neglecting products of small quantities
−??????????????????+??????A+
??
6
dA− ??????????????????????????????=??????????????????(??????+????????????−??????)
Swiss mathematician Leonhard Euler (1707–83).

9
????????????
????????????
+
??????????????????
??????
+ ???????????? =0
?
????????????
????????????
6
5
+ ?
??????????????????
??????
6
5
+ ?????????????
6
5
=0
For incompressible fluid flow (ρ=const) ), integrating between any
two points (1) & (2) on a streamline
(1)
(2)

10
?
?
+
?
.
6?
+ ?????? =??????????????????????????????, along a streamline
Bernoulli’s Equation (B.E.)
?
????????????
????????????
6
5
+ ?
??????????????????
??????
6
5
+ ?????????????
6
5
=0
This result is usually known as Bernoulli’s equation or the Bernoulli equation in honour
of a Swiss mathematician, Daniel Bernoulli (1700–82) who in 1738 published one of the
first books on fluid flow.
??????
6
−??????
5
????????????
+
??????
6
6
−??????
5
6
2??????
+??????
6
−??????
5
=0
??????
5
????????????
+
??????
5
6
2??????
+??????
5
=
??????
6
????????????
+
??????
6
6
2??????
+??????
6

Bernoulli’s Equation (B.E.)
11
??????
????????????
+
??????
6
2??????
+ ?????? =??????????????????????????????
Along a
streamline
Assumptions:
-Steady flow
-Inviscid (frictionless) fluid flow
-Incompressible fluid
-No energy added (eg, pump) or removed (eg, turbine) between pts. (1) & (2)

Note:
12
Each term in the B.E. has dimensions [L] or units ‘m’ and gives energy per unit weight of fluid.
??????
????????????
+
??????
6
2??????
+ ?????? =??????????????????????????????
pressure energy
per unit weight
kinetic energy
per unit weight
potential energy
per unit weight
energy per unit weight->
‘Head’ = Height of
equivalent static
column of that fluid
Pressure HeadVelocity Head
Elevation Head
(Potential Head)
B.E. → Total energy per unit weight is constant along a streamline.
Conservation of Energy

13
Total Energy (Head) Line (is horizontal for
frictionless flow)
z = 0 (datum)
Piezometric Head Line (Hydraulic gradient)
??????
????????????

??????+
??????
????????????
??????
??????
6
2??????

Problem4
•Steady flow of a liquid of ρ = 685 kg/m
3
at Q = 85 l/s through a level
reducing pipe. Given, D
1
= 300 mm, D
2
= 200 mm, and p
1
= 10 kPa,
find p
2
.
14
??????
5
=300 ????????????
??????
5
=200 ????????????
??????=85 ??????/??????
1 2
CS
1
CS
2
CS
3
CV

•For mass continuity:
??????=??????
5
??????
5
=??????
6
??????
6
=0.085
V
1
=1.2 m/s
V
2
=2.7 m/s
15
??????
5
=300 ????????????
??????
5
=200 ????????????
??????=85 ??????/??????
1 2
CS
1
CS
2
CS
3
CV
Assume fluid is inviscid (so, frictionless) and incompressible
Applying B.E. between pts (1) and (2):
??????
5
????????????
+
??????
5
6
2??????
+??????
5
=
??????
6
????????????
+
??????
6
6
2??????
+??????
6

16
??????
5
=300 ????????????
??????
5
=200 ????????????
??????=85 ??????/??????
1 2
CS
1
CS
2
CS
3
CV
Assume fluid is inviscid (so,
frictionless) and incompressible
Applying B.E. between pts (1)
and (2):
??????
5
????????????
+
??????
5
6
2??????
+??????
5
=
??????
6
????????????
+
??????
6
6
2??????
+??????
6
??????
5
????????????
+
??????
5
6
2??????
=
??????
6
????????????
+
??????
6
6
2??????
Z
1
=Z
2
, level pipe
??????
6
=??????
5
+
5
6
??????(??????
5
6
−??????
6
6
)= 10×10
3
+ 0.5×685×(1.2
2
-2.7
2
)= 8kPa

Problem5
A vertical pipeline with a reducer section and flow downwards.
Given, D
1
= 300 mm, D
2
= 200 mm, and p
1
= 10 kPa, find p
2
.
From previous example V
1
= 1.2 m/s, V
2
= 2.7 m/s
17
??????
5
=300 ????????????
??????
5
=200 ????????????
??????=85 ??????/??????
1
2
CS
1
CS
2
CS
3
CV
W
Applying B. E. between (1) & (2):
Assume fluid is inviscid and incompressible
??????
5
????????????
+
??????
5
6
2??????
+??????
5
=
??????
6
????????????
+
??????
6
6
2??????
+??????
6
??????
6
=??????
5
+
5
6
??????(??????
5
6
−??????
6
6
)+????????????(??????
5
−??????
6
)
= 10×10
3
+ 0.5×680×(1.2
2
-2.7
2
)+685×9.81(0.15)= 9kPa
150 mm

18
Tags