Forest management 3rd year

2,805 views 86 slides Sep 21, 2021
Slide 1
Slide 1 of 86
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86

About This Presentation

Forest Management note


Slide Content

Lecture notes
Forest Management (SFM 552)
B.Sc 3
rd
Year 2
nd
Semester





























Prepared by:
Bishnu P Devkota
Lecturer
Kathmandu Forestry College
Kathmandu, Nepal

December 2010

ii Lecture notes on Forest Management by Bishnu P Devkota, 2010

Table of Contents
Unit-1: Introduction and background ................................................................................... 1
1.1 Forest management objectives ......................................................................................... 1
1.2 Forest management alternatives and analysis................................................................... 2
1.3 Decision making principles and models ........................................................................... 4
1.4 Different forest management strategies in Nepal ............................................................. 6
1.5 Role of forest in economic development .......................................................................... 8
1.5.1 Contribution in national economy ............................................................................. 8
1.5.2 Role in local economy ............................................................................................... 8
1.5.3 Role of forest in livelihood ........................................................................................ 8
1.6 Forest, society and environment ..................................................................................... 10
1.6.1 Social benefits of forests.......................................................................................... 10
1.6.2 Environmental benefits of forest ............................................................................. 10
Unit-2: Concept and principle of sustainable forest management .................................... 11
2.1 Concept and principles of sustainable forest management............................................. 11
2.1.1 Concept, definition and principles of sustainable forest management. ................... 11
2.1.2 Criteria and indicators of sustainable forest management ....................................... 15
2.1.3 Various forest certification schemes........................................................................ 19
2.2 Concept and practice of sustained yield ......................................................................... 22
2.2.1 Concept, definition of sustained yield ..................................................................... 22
2.2.2 Pre-Requisites for Sustained Yield .......................................................................... 23
2.2.3 Limitations in Nepal conditions............................................................................... 23
2.2.4 Yield types ............................................................................................................... 24
2.2.5 Management steps for Sustained Yield ................................................................... 24
Unit-3: Forest valuation methods ......................................................................................... 25
3.1 Common valuation techniques ....................................................................................... 27
3.2 Time value of Money ..................................................................................................... 29
3.2.1 Interest rate .............................................................................................................. 30
3.2.2 Discount rate ............................................................................................................ 30
3.3.3 Inflation adjustment ................................................................................................. 31
3.3 Decision Making criteria. ............................................................................................... 32
3.3.1 Present net worth ..................................................................................................... 32
3.3.2 Benefit cost ratio ...................................................................................................... 33
3.3.3 Land expectation value ............................................................................................ 33
3.3.4 Internal rate of return (IRR)..................................................................................... 34
3.4 Risk and uncertainly evaluation. .................................................................................... 35
3.4.1 Risk management..................................................................................................... 36
3.4.2 Decision making with uncertainly ........................................................................... 38
Unit-4: Rotation...................................................................................................................... 40
4.1 Concept and types of rotation ......................................................................................... 40
4.1.1 Concepts definitions ................................................................................................ 40
4.1.2 Types of Rotations ................................................................................................... 41
4.1.3 Choice and length of rotation .................................................................................. 43
4.2 Rotation determination methods..................................................................................... 43
Unit-5: Forest regulation ....................................................................................................... 47
5.1 Concepts and approaches ............................................................................................... 47
5.1.1 The normal forest concept ....................................................................................... 47
5.1.2 Yield tables and yield regulations............................................................................ 49

iii Lecture notes on Forest Management by Bishnu P Devkota, 2010

5.2 Regulating plantation forest (even aged forest).............................................................. 51
5.2.1 Concepts .................................................................................................................. 51
5.2.2 Application .............................................................................................................. 52
5.3 Regulating natural forest (uneven aged forest) .............................................................. 59
5.4 Allowable cut methods ................................................................................................... 66
5.4.1 Area control ............................................................................................................. 66
5.4.2 Volume control ........................................................................................................ 68
5.4.3 Combined area and volume control ......................................................................... 69
Unit-6: Forest policy .............................................................................................................. 71
6.1 Policy formulation process ............................................................................................. 74
6.1.1 Local ........................................................................................................................ 74
6.1.2 National.................................................................................................................... 74
Unit-7: Forest resource management plan .......................................................................... 77
7.1 Forest resource management plan .................................................................................. 77
7.1.1 Concept, definitions, objectives and limitations for forest management plan......... 77
7.1.2 Components of forest management plan ................................................................. 79
7.1.3 Forest management unit........................................................................................... 80
7.2 Preparation of forest management plan .......................................................................... 80
7.2.1 Data Collection ........................................................................................................ 80
7.2.2 Maps and sketches ................................................................................................... 81
7.2.3 General format ......................................................................................................... 81
7.2.4 Contents ................................................................................................................... 82
7.2.5 Write up of management plan.................................................................................. 82
7.2.6 Methods of updating ................................................................................................ 83

1 | Lecture notes on Forest Management by Bishnu P Devkota, 2010

Unit-1: Introduction and background

Definition
 Forest Management is defined as the practical application of the scientific, technical
and economic principles of forestry.
 Forest management is that branch of forestry whose function is the organization of a
forest property for management and maintenance, by ordering in time and places the
various operations necessary for the conservation, protection and improvement of the
forest on the one hand, and the controlled harvesting of the forest on the other.
1.1 Forest management objectives
 Primary objective of good management is provision of the maximum benefit to the
greatest number of people for all time.
 Forest may be managed primarily for productive purpose, for direct material benefits,
or protective purposes for, indirect benefits. It is depended upon the primary and
secondary objectives of the owners.

General objectives of Forest Management
1. Maintaining and as far as possible, raising the productive capacity of the soil and of
the forest stands consistent with the maximum site potential.
2. Promoting the protective effect of the forest, against soil erosion, avalanches floods
and protection of the physical factors, such as natural scenery, local flora and fauna.
3. Execution of silvicultural operations and regulation of felling in such a way so as to
bring the forest to a condition of as near normality as possible: in simple words,
attainment of a normal forest is one of the principle objects.
4. Satisfaction of rights of the right holder in respect of timber, firewood, grazing, etc. in
particular, and to meet the basic requirement of the local population in general.
5. Providing the maximum possible volume of valuable timber for constructional and
industrial proposes, and other forest produces for meeting the market demands and
securing the highest possible financial results.

Special Objective of Forest Management
Special objects may be laid down for different regions/locations, with different site factors
and forest types, more suited for specific purpose. Some examples are given below:
a. Badly eroded areas and steep hill slopes may be constituted into a protection
management, where the special object will be protection, afforestation, soil and water
conservation; satisfaction of only the minimum social needs of the local population,
ignoring consideration for market supplies and financial returns.
b. In the watershed of municipal water supplies, irrigation and hydroelectric generation
dams. The special objectives being the maintenance of an undisturbed protective
vegetative cover, all other forms of use must be subordinated to it.
c. In the forest areas of natural scenic beauty, woodlands near urban habitation,
recreation often being the dominant object, timber feelings, grazing and even hunting
will have to be entirely stopped. Such forests serve as ‘magnificent playground for
tired mankind seeking peace and spiritual strength’.
d. Mixed miscellaneous open forests, heavily grazed and felled in the past, with low
proportion of valuable timber and industrially important species are clear felled and
converted into plantation of desired species- pure or simple compatible mixture. Such
areas have extensively been constituted into plantation of timber industrial in the inner

2 Lecture notes on Forest Management by Bishnu P Devkota, 2010

terai and terai region with a view to meet increasing demand for industrial raw
material for pulp, match and plywood industries, e.g. Sagarnath plantation.

Objective of forest management in context of Nepal
1. Stabilize the supply of timber, fuel wood, fodder and other forestry products
necessary for general people in their day to day lives.
2. Increase the productivity of forest products to ensure the supply of raw materials to
forest based industries, which contribute to the national economy.
3. Increase income from employment opportunities in the forestry sector for
underprivileged families.
4. Develop national parks, wildlife reserves and protected areas in order to preserve
biological diversity to maintain ecological processes and ecosystems and create
recreational areas.
5. Help maintain land fertility through the conservation of soil and other watershed
resources.
6. Adopt proper land use practices.
1.2 Forest management alternatives and analysis
 There is seldom a single objective of forest management.
 Owners usually have multiple objectives and they often conflict with each other.
Then, the owner must give up some or all of one objective to obtain the other. For e.g.
maximizing the forest’s present net worth and maintaining a continuous wood flow
may conflict. The owner can smooth out wood flow by cutting some stands before or
after the age at which their present net worth is maximum. But doing this causes the
total present net worth to be less than the absolute maximum.
 Some objectives may be mutually exclusive, for e.g. producing timber and
maintaining wilderness on the same land.
 Actual management objectives, whether stated or unstated, are a mixture of several
management objectives. There is no one correct mixture. This depends on the owner’s
objectives and the relative importance placed on them.
 The alternatives of forest management may be viewed as the many actions that a
forest owner may take to achieve his/her objectives. These are the actions that can be
taken in the field that will cause production of one or another, or some mix, of forest
products. The actions an owner takes can include cutting, reforestation and
construction.
 Cutting the forest, or not cutting it, is one of the primary tools for accomplishing
management objectives.
 Cutting can manipulate the forest to obtain desired forest products at the desired point
in time.
 Different kinds of cutting such as clear cutting or shelterwood cutting have different
effects on the residual stand and hence on the products.
 Both the timing and type of cut are management alternatives that must be decided on.
 Reforestation practices are a second major set of alternatives that must be chosen to
obtain management objectives.
 Choices must be made between natural and artificial reforestation, the kind of site
preparation if any, and the species to be regenerated.
 Reforestation practices affect density and species and hence forest production
possibilities.

3 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 Construction is a third major set of alternatives that must be chosen.
 There are many kind of construction and each can affect the amount of an objective
obtained. For e.g. road placement not only affect timber harvest but also affects access
for recreation and hunting, aesthetic values and soil stability.
 Forest management alternatives are also defined by the physical production
possibilities of the forest.
 The physical production possibilities are determined by the basic biology of the forest
being managed. Thus, the alternatives flow from and are defined by different topics of
silviculture, mensuration etc.
 There are various analytical techniques for choosing between alternatives. Some
techniques are general and not unique to forestry whereas some techniques have been
developed to answer particular forestry problems.
 Discounting and present net worth are general techniques applied to forestry problems
whereas land expectation value is special cases of discounting developed for forestry
problems.
 The simple method of discounting is calculating present value of investment.
Discounting,



Where,
Vo = the present value
Vn = the future value in n years
i = interest rate
n = the years in which the payment occurs
 The present net worth criterion is one of the widely used and accepted investment
criteria recognizing the time value of money.
 The PNW is the algebraic sum of the discounted costs and revenues at a specified
interest rate.



Where,
PNW= Present net worth
Rt= the revenue or positive cash flows in year t
Ct= the cost or negative cash flows in year t
t= the year in which the cash flows occurs
i= the interest rate
Analysis: An investment is acceptable if the PNW is positive and is not acceptable if it is
negative.
 Land expectation value is nothing more than a special case of PNW that has certain
restrictive assumptions made on it. These are
− Land value is zero
− The land has no residual stand
− The land will be forested in perpetuity.
− The cash flows from the forest will be the same in perpetuity.
n
n
o
i
V
V
)1(
  
 

n
t
ttt
i
CRPNW
0 )0.1(
0.1

4 Lecture notes on Forest Management by Bishnu P Devkota, 2010



Where,
Le= the land expectation value
Vo= the present value of a perpetual periodic annuity that will be every n years
n= the number of years between annuity payments
i= the interest rate
Analysis: Invest if land expectation value is greater than market value .
 Analytical techniques provide guidelines for choosing between courses of action.
They tell us what will happen if all assumptions and projections used in the analysis
are fulfilled.
 Analytical results must be considered guidelines and not irrevocable answer because
projections of variable (such as yield) contains errors and not always met and the
analytical models are seldom perfect.
1.3 Decision making principles and models
 Forest management objectives and alternatives together form a decision making
model.
 Decisions making models may have several variants, some may be more complicated
whereas some are less complicated.
 The following diagram represents a general decision making model adapted in forest
management.

Figure 1: A rudimentary decision making model
1. Decision maker
 A decision maker is at the top and is ultimately responsible for deciding which
alternative is chosen.
 A decision makers decides on the basis of available data and their analysis,
consultation with staff members. 0.1)0.1(
)0.1(



n
n
oe
i
i
VL

5 Lecture notes on Forest Management by Bishnu P Devkota, 2010

2. Objectives
 In this step, objectives are identified and conflicting objectives resolved.
 Sometimes decision making process often focuses on problems and causes their
resolution.
 Ideally, decision maker has one or more objectives identified and provide
information for listing alternatives.
3. Alternatives
 Alternatives are the different courses of action that managers may take to reach their
objectives.
 In the idealized system the decision makers lists the alternative courses of action they
must take to reach their objectives.
 Each alternative may partially or fully achieve the objectives.
4. Constraints
 These are barriers or constraints to reaching objectives.
 They are what must be given up to reach the objective or what prevent one from
reaching the objective.
 Both physical and economic constrains can be identified.
 Physical constraints may exist in the forest production process that do not allow
reaching some objectives. For e.g. Site quality may determine how much timber can
be grown in an area.
 Economic constraint such as limited availability of fund determines investment in
forestry program or non forestry program.
 The forest managers must choose those alternatives to reach the desired objective
within these constraints.
5. Decision
 Once the objective is identified, alternatives are listed along with constraints on each
alternative.
 Analysis can be made at this point and one of the three decisions can be made:
• Choose an alternative
• Do nothing
• Go back and obtain more data for further analysis
 Choosing an alternative from among those listed means that a course of action has
been defined. The next step is to implement the alternative.
 To do nothing, is to let things continue as they are.
 Finally more information can be sought, it can be done at any of the preceding level.
Objectives can be reformulated, new alternatives set or more data about existing
alternatives obtained and additional information on constraints can be found.
 Seeking more data brings us back to the model at these levels until an exit point is
reached- either a “no” or “alternative” decision.

6 Lecture notes on Forest Management by Bishnu P Devkota, 2010

1.4 Different forest management strategies in Nepal
a. Strategies for production and utilization
 Reduction of consumption
 Increase production
 Effective harvesting and distribution
 Improve pasture and livestock management
b. Conservation of ecosystems and genetic resources
 Legal and institutional arrangement
 Public education and extension
c. Social sustainability
 Ad her decentralization policy by entrusting user for protection, management and use
 Provide livelihood to poor and landless people in forestry activities
d. Private involvement in forestry
 Resource base consolidation
 Industrial development
e. Policy implementation
 Direct human resources to priority areas
 Improve policy, legal and institutional framework
 Training to sufficient, motivated and competent manpower
 Prioritize development program and determine observance of the priorities
 Advocate people's participation and of NGOs'.

Forest Management Scenario in Nepal
 Forest management in Nepal has gone through three phases, namely privatization,
nationalization and populism respectively (Hobley and Malla, 1996, MFPS, 1988).
 During the Rana period, there was plenty of forest and they had not felt any thing
about the Forest. Forest was like the private property of Ranas. They could give any
part of forest to which they like. At that time, forest was exploited for supplying the
railway sleeper to India and/or for creating extra land revenue.
 After the democracy in 1951, various legislative measures were enforced to ensure
clear ownership over the forest. The private Forest Nationalization Act, 1957 was a
very controversial step in the history of Forest management in Nepal. Huge tracts of
forest under communal management and private control were brought under state
property. After nationalization, local communities through out the country reacted
negatively believing that their traditional rights of access and use had been curtailed.
 After experiencing the bitter hardship from the nationalization Act, the government
introduced another act, viz. The Forest Act, 1961 which was more focused on the
forest administration.
 Inclusion of different forest management regimes like Panchayat Forest, Panchayat
Protected Forest, Private Forest and religious forest were the major component of this
act.

7 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 At the time de jure manager was only government. People were considered as
destroyer of the forest.
 This system had not succeeded to conserve the forest.
 By the mid 1970’s the government realized that local people had to be involved in the
management of forest and started the community forest management system.
 Master plan for forestry sector (1988) has emphasized the community forestry as first
priority.
 To implement the master plan, the government has promulgated Forest Act, 1993
and Forest Regulation, 1995 which were become the milestone in sustainable forest
management through people’s participation.
 This legislation opens the door to implement community forestry nation wide.
 Community forestry becomes more popular in mid hills of Nepal than other forest
management system.
 Unfortunately, Forest management in Terai has always lacked accountability and
transparency, often sparking controversy.
 Encouraged by the successful experiment of community forestry programme in hills,
government has started community forestry programme in Terai also, but this was not
success like hills.
 Government has now initiated new concept of forest management named
Collaborative Forest Management (CFM) in Terai according to Forest policy 2000 by
involving all stakeholder including local users, local government i.e. VDC &DDC,
NGO’s etc. (DoF,2003)

Current Forest Management Strategies in Nepal
 Based on ownership, Nepal has two category of forest; private and national forest.
 Private forests are nominal in number, and are being sole managed by private sector.
 National forest is managed either by government itself or with people’s participation.
 Government of Nepal has managing its forest through Ministry of Forest and Soil
Conservation (MOFSC) with definite policy, vision and objective.
 Some areas are managed as protected areas where as most of the areas are being
managed in the purpose of producing multiple forest products.
 Production forests are managed by department of forest through District Forest Office
and Range offices.
 Similarly, protected areas are being managed by Department of National Parks and
Wildlife Conservation through National parks, Wildlife reserves and conservation
areas.
 Nepal has adopted community based forest management strategies under the
following category.
• Community forest
• Collaborative forest
• Leasehold forest
• Bufferzone forest
• Religious forest

8 Lecture notes on Forest Management by Bishnu P Devkota, 2010

1.5 Role of forest in economic development
1.5.1 Contribution in national economy
 In developing countries, forest resources are important to the quality of life and
survival of large number of rural poor (World Bank, 2001; Nilsson, 1996).
 In Nepal, rural subsistence economy depends to a significant extent on primary
products from agriculture and forest.
 Subsistence farming is based on a man- cattle- forest relationship (Mahat, 1987).
 Forestry sector’s contribution to the national income has reduced from 14.6% in
1956-61 to 3.6% in 1975-80.
 This has further decreased to 2.8% in FY 2006/07 (CBS, 2007).
 There are two eminent reasons for the dwindling contribution of forestry sector in
national income; growth in non-agriculture sector and inefficient forest management.
 In Nepal, forestry sectors contribution to the GDP has been estimated as sub-sector of
agriculture due to which difficulties has been faced to differentiate the forestry sectors
contribution to the GDP from Agriculture sector.
 By the end of tenth plan, agriculture together with forestry sector has 34.9%
contribution to the GDP of Nepal(GoN, 2007) and 32.1% in FY 2007/08 (MoF, 2008)
 It has been estimated that forestry sector has a contribution of 4.4% to the total GDP
of Nepal during the period of 1990 to 2000 (FAO, 2004)
 Forest products such as small poles and timber are used to make farm instruments and
tools, while leaves and twigs are used as a compost making materials.
 Majority of the people use forest products for cooking, heating and feeding livestock.
 More than 75% of the energy needs come from the forestry sector and particularly in
the mid-hills, 94% of rural households rely on fuelwood as their primary fuel for
cooking and heating (Edmonds, 2002).
1.5.2 Role in local economy
a. Agriculture
 Forest fodder satisfies about 37 % of total fodder needs of livestock in Nepal
 Most of the cattle eat 2.25Kg of dry matter /Day/100Kg Body weight
 About 42 % of the total TDN (Total Digestible Nutrients) requirement is estimated to
be met from the forestry sector (New ERA 1992).
 Total fodder requirement : 6.08 Million ton/Year.
 The annual per capita fuel wood consumption in the Hills is about 708 kg whereas it
is 689 kg in the Terai.
b. Rural enterprises
 Provide raw materials to forest based enterprises such as Kutch and Kattha, resin
tapping, paper, plywood etc.
1.5.3 Role of forest in livelihood
 A livelihood comprises people, their capabilities and their means of living, including
food, income and assets. Tangible assets are resources and stores, and intangible
assets are claims and access.

9 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 A livelihood is environmentally sustainable when it maintains or enhances the local
and global assets in which livelihoods depend, and has net beneficial effects on other
livelihoods.
 A livelihood is socially sustainable which can cope with and recover from stress and
shocks, and provide for future generations.
 Today, it is understood that forest underpins a wide ranges of goods and services for
human well-being:
 storage and purification of drinking water
 mitigation of natural disasters such as droughts and floods
 storage of carbon and regulation of climate
 provision of food, rainfall, and a vast array of goods for medicinal, cultural
and spiritual purposes.
 It is estimated that 60 million indigenous people are almost wholly dependent on
forests, while 350 million people depend on forests for a high degree for subsistence
and income (World Bank 2004).
 The poor rely on forest goods and ecosystem services for a range of basic needs:
food, shelter, clothing and heating.
What is the role of forest?
 Support current consumption
– subsistence consumption, cash income, agricultural inputs, input to industries,
input to capital formation
– Provide safety nets
– fill gaps in response
to risks
(seasonality)
– safety nets in
response to post
shocks
 Pathway out of poverty
– poverty prevention
vs. poverty
reduction
– poverty traps (low
value added)
– low potential for
economy-wide
impact of industries

Forest goods and services
Provisioning Services
▪ Food, Fiber and Fuel
▪ Genetic Resources
▪ Biochemicals
▪ Fresh Water
Cultural Services
▪ Spiritual and religious
values
▪ Knowledge system
▪ Education and inspiration
▪ Recreation and aesthetic value
Regulating Services
▪ Invasion resistance
▪ Herbivory
▪ Pollination
▪ Seed dispersal
▪ Climate regulation
▪ Pest regulation
▪ Disease regulation
▪ Natural hazard
protection
▪ Erosion regulation
▪ Water purification
Supporting Services
▪ Primary production
▪ Provision of habitat
▪ Nutrient cycling
▪ Soil formation and
retention
▪ Production of
atmospheric oxygen
▪ Water cycling

10 Lecture notes on Forest Management by Bishnu P Devkota, 2010

1.6 Forest, society and environment
1.6.1 Social benefits of forests
 Contribution to over all economy
 Creation of employment opportunities
 Poverty reduction
 Fuel wood
 Industrial timber and lumber
 Pulp and paper
 Medicines
 Mineral extraction and recreation

1.6.2 Environmental benefits of forest
 Protection of sites and landscapes
 Spiritual and recreation value
 Food webs and energy flow
 Water regulation
 Local and regional climate
 Numerous habitats and niches
 Purify water and air
 Chemical cycling
 Reduce soil erosion
 Store atmospheric carbon
 Provide wildlife habitats

11 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Unit-2: Concept and principle of sustainable forest management

Sustainable development
 The word sustainable development was first used in World Conservation Strategy
report in 1980
 The primary concern of sustainable development is that planning should work with
the resources of a region.
 The concept was made operational only in 1987 by Our Common Future.
 Sustainable Development is defined as “meeting the basic needs of the present
without compromising the ability of the future generations to meet their own need.

Principle of sustainable development
 Living with the environment limit.
 Ensuring a strong healthy environment.
-Meeting the diverse need of all people in existing and future communities
 Achieving a sustainable economy
 Using sound scientific responsibility
 Promoting good governance
2.1 Concept and principles of sustainable forest management
 Sustainable development concept was elaborated by the World Commission on
Environment and Development in 1987, and endorsed by the United Nations
Conference on Environment and Development (UNCED) in June 1992.
 Since then, it has become the most important issue in the development aspirations of
the 1990s.
 Sustainable forest management has been described as forestry’s contribution to
sustainable development.
 This is development, which is economically viable, environmentally sound and
socially beneficial and which balances present and future needs.
 Sustainable forest management is considered as one of the most important
contributions which the forestry sector can make to the sustainable development
objectives of any nation, particularly those richly endowed with forest (FAO, 2000).
 Sustainable development became a common theme as concerns grew over the
burgeoning world population and increasingly polluted environment.
 Accordingly, it drew attention to protect and conserve the global environment and
emphasized a shift in attitudes from pure utilization towards ecological orientation
(FAO, 2000).
2.1.1 Concept, definition and principles of sustainable forest management.
Definition of sustainable forest management
 Sustainable forest management is the process of managing forest to achieve one or
more clearly specified objectives of management in relation to the production of a
continuous flow of desired forest products and services without undue reduction of its
inherent values and future productivity and without undue undesirable effects on the
physical and social environment (ITTO, 1998 in ITTO 2005).

12 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Ministerial Conference on the Protection of Forests in Europe (MCPFE), 1993 defines
sustainable forest management as the:
 ‘Stewardship and use of forests and forest lands in such a way, and at a rate, that
maintains their productivity, regeneration capacity, vitality and their potential to fulfill
now and in the future, relevant ecological, economic, and social functions, at local,
national, and global levels, and that does not cause damage to other ecosystems.’

Concept of sustainable forest management
 Forests play critical roles in accounting for most of the terrestrial plant biomass and
in regulating global temperature by sequestering carbon.
 As a public good, they contribute to stable, fertile landscapes for human settlement,
provide numerous timber and non-timber resources and are places of recreation.
 For indigenous peoples they are often places of important spiritual significance.
 However, the natural forests of Asia remain in a state of crisis, threatened by a
complex array of forces that undermine their ability to fulfill vital ecological and
societal functions. (www.fao.org/forestry)
 The concept of sustainable forest management is introduced as a broad conceptual
instrument to assess solutions to forest loss and degradation.
 Sustainable forest management is considered as one of the most important
contributions, which the forestry sector can make to the sustainable development
objectives of any nation, particularly those richly endowed with forest.
 In forestry, sustainability involves the continued existence and use of forests to meet
human physical, economic, and social needs, the desire to preserve the health of forest
ecosystems in perpetuity, and the ethical choice of preserving options for future
generations while meeting the needs of the present. Determining what is sustainable is
a difficult task. A framework of criteria and indicators (visit www.itto.or.jp/c&i) of
forest sustainability can be used to foster discussions on the meaning of sustainability
for a particular time and place.
 Sustainable Forest Management aims to ensure that the goods and services derived
from the forest meet present-day needs while at the same time securing their
continued availability and contribution to long-term development. In its broadest
sense, forest management encompasses the administrative, legal, technical, economic,
social and environmental aspects of the conservation and use of forests. It implies
various degrees of deliberate human intervention, ranging from actions aimed at
safeguarding and maintaining the forest ecosystem and its functions, to favouring
specific socially or economically valuable species or groups of species for the
improved production of goods and services
 Many of the world’s forests and woodlands, however, especially in the tropics and
subtropics, are still not managed in accordance with the Forest Principles adopted at
the United Nations Conference on Environment and Development (UNCED, 1992).
Many developing countries have inadequate funding and human resources for the
preparation, implementation and monitoring of forest management plans, and lack
mechanisms to ensure the participation and involvement of all stakeholders in forest
planning and development. Where forest management plans exist, they are frequently
limited to ensuring sustained production of wood, without due concern for non-wood
products and services or social and environmental values. In addition, many countries
lack appropriate forest legislation, regulation and incentives to promote sustainable
forest management practices. (Ferguson 1997)

13 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 Urgent attention is needed to address the causes of forest loss and degradation. In
order to examine instruments that tackle these causes, a conceptual anchor is needed
to describe what might be considered an ideal state of forest management. The ideal
state provides a frame of reference to gauge improvements in forest management.
“Sustainable forest management” (SFM) is used for this purpose. Since the 1990s,
SFM has been at the forefront of international deliberations on forestry issues and is
now widely embraced by inter-governmental, regional, national and sub-national
conservation and development institutions. At the Second Expert Meeting on
Harmonizing Forest-Related Definitions for Use by Various Stakeholders organized
by the FAO and the IPCC in 2002, several definitions of SFM were presented. Of
these, the definition developed by the Ministerial Conference on the Protection of
Forests in Europe (MCPFE) best captures the multiple functions of forests. The
MCPFE definition, though not formulated specifically with Asian forests in mind,
does embrace the variety of critical forest functions in the region.
 SFM has been the conceptual basis of an international movement to develop criteria
and indicators to assess the state of forests and their management, in which a number
of Asian countries participate. Because of the variety of forest types in Asia described
earlier, it is not possible to present a region-wide specific set of criteria for assessing
forestry practices. However, the concept of SFM can be used loosely to assess new
policies and instruments of forest management and is employed for this purpose.

 Sustainable development became a common theme as concerns grew over the
burgeoning world population and increasingly polluted environment. Accordingly, it
drew attention to protect and conserve the global environment and emphasized a shift
in attitudes from pure utilization towards ecological orientation (FAO, 2000a as cited
by Shrestha and Sharma, 2004).
 Traditional sustained yield, a concept which was brought by a German forester-Georg
Hartig in 1795, focused mainly on the production of commodities, but has proven
inadequate to meet the requirements of the present day society for various products
and services and other non-material benefits and this concept was broadened in 1970s
and consequently revised with a new concept of sustainable forest management. The
traditional and modern concepts of sustainable forest management are presented
below (Adopted from Shrestha and Sharma, 2004).

14 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Conceptual Model of Sustainable Forest Management:























Fig-2: Modern approach of sustainable forest management

Principle of sustainable forest management

Principle: A fundamental truth or law as the basis of reasoning or action. Principles in the
context of sustainable forest management are seen as providing the primary framework for
managing forests in a sustainable fashion (Mendoza et al., 1999).
 It is difficult to explicitly define what sustainable forest management is. However, several
recent international meetings have suggested that the following seven thematic elements
are key components.
(1) Extent of forest resources;
(2) Biological diversity;
(3) Forest health and vitality;
(4) Productive functions of forest resources;
(5) Protective functions of forest resources;
(6) Socio-economic functions;
(7) Legal, policy and institutional framework.

Conservation
Regeneration
Utilization
Sustainable forest
management
Ecological well-being
Social well-being
Economic well-being
Sustainable forest
management

15 Lecture notes on Forest Management by Bishnu P Devkota, 2010

2.1.2 Criteria and indicators of sustainable forest management
Criteria
Criteria define the essential elements against which sustainability is assessed, with due
consideration paid to the productive, protective and social roles of forests and forest
ecosystems. Each criterion relates to a key element of sustainability, and may be described by
one or more indicators.
Seven criteria are identified as essential elements of sustainable forest management.
 Criterion 1, Enabling Conditions for Sustainable Forest Management, is concerned
with the general legal, economic and institutional framework without which actions
included under the other criteria will not succeed.
 Criteria 2 and 3 on Forest Resource Security and Forest Ecosystem Health and
Condition, respectively, are concerned with the quantity, security and quality of forest
resources.
 The remaining four criteria deal with the various goods and services provided by the
forest, including Flow of Forest Produce, Biological Diversity, Soil and Water and
Economic, Social, and Cultural Aspects.
 The order of presentation of the criteria represents a logical sequence but does not
indicate priority or relative importance.
 The seven ITTO criteria are shown schematically.

16 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Indicators
 Indicators are parameters which can be measured and correspond to a particular
criterion.
 They measure and help monitor the status and changes of forests in quantitative,
qualitative and descriptive terms that reflect forest values as seen by those who
defined each criterion.
 The indicators presented here have been carefully identified and formulated so that a
change in any one of them would give information that is both necessary and
significant in assessing progress towards sustainable forest management.
 They have also been defined so that they are clear, practical and easy to monitor, and
based as far as possible on available research knowledge and statistics.
 It should, therefore, be possible for countries to provide information on many of them,
although only a few countries will immediately be able to provide information on
them all.
 Countries face a considerable load in reporting to different international organisations.
This load can be eased by ensuring that the nature of the data required is as similar as
possible. Indicators have, therefore, been chosen so as to be compatible with those
being requested for FAO’s Forest Resources Assessment (FRA-2000).
 Wherever possible, quantitative indicators have been suggested but, in some
instances, this is not possible or would prove too expensive. Where this is the case,
qualitative or descriptive indicators are provided.
 It is important, if the indicators are to give an accurate picture of trends, that
comparable methods should be used between one time of assessment and the next;
and that there should be a means of estimating the degree of accuracy of any data
presented.
 Over time, lessons will be learnt about the collection of certain data. Ideally, all
countries should use the same methods of measurement and assessment, but this is
unlikely to be for some time. Countries should, therefore, give a description of the
methods used and an estimate of the accuracy of their figures and any difficulties
encountered in their collection.

Criteria and indicators developed by ITTO (2005)
SN Criteria Indicators
1 Enabling conditions for
sustainable forest management
1. Policy, legal and governance framework
2. Economic framework
3. Institutional framework
4. Planning framework
2 Extent and conditions of forests 1. Extent (area) and percentage of total land under
comprehensive land use plan.
2. Extent (area) of forests committed to production
and protection.
3. Extent (area) and percentage of total land area
under each forest type
4. Percentage of PFE with boundaries physically
demarcated.
5. Changes in forest area
6. Forest condition

17 Lecture notes on Forest Management by Bishnu P Devkota, 2010

3. Forest ecosystem health 1. Extent and nature of forest encroachment,
degradation and disturbance caused by human
and the control procedures applied.
2. Extent and nature of forest degradation and
disturbance due to natural causes and the control
procedures applied.
4 Forest production 1. Resource assessment
2. Planning and control procedures
3. Silvicultural and harvesting guidelines
5 Biological diversity 1. Ecosystem diversity
2. Species diversity
3. Genetic diversity
4. Procedures for biodiversity conservation in
production forests
6 Soil and water protection 1. Extent of protection
2. Protective functions in production forests
7 Economic, social and cultural
aspects
1. Socio economic aspects
2. Cultural aspects
3. Community and indigenous peoples rights and
participation

Criteria and indicators developed by Canadian Council of forest ministries (2000)
SN Criteria Indicators
1 Conservation of biological
diversity
 Ecosystem diversity
 Species diversity
 Genetic diversity
2 Ecosystem condition and
productivity
 Disturbance and stress
 Ecosystem resilience
 Extent biomass
3. Soil and water conservation  Physical environmental factors
 Policy and protection forest factors
4 Global ecological cycles  Global carbon budget
 Forest land conservation
 Carbon dioxide conservation
 Policy factors
 Hydrological cycles
5 Multiple benefits  Productive capacity
 Competitiveness
 Contribution to economy
 Non timber values
6 Society’s responsibility  Aboriginal and treaty rights
 Participation by aboriginal communities
 Sustainability of forest communities
 Fair and effective decision making
 Informed decision making

18 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Criteria and indicators developed by Indian Institute of Forest Management, Bhopal
(2002)
SN Criteria Indicators
1 Increase in the extent of forest
cover and tree cover
 Area and type of forest cover under natural and
manmade forests
 Encroachment in forest area
 Forest area diverted for non forestry purposes
 Trees outside forest
2 Maintenance, conservation and
enhancement of biodiversity
 Number of plant species
 Number of animal species
 Ecosystem area (by forest types)
3. Maintenance and enhancement
of ecosystem function and
vitality
 Status of natural regeneration
 Incidence of forest fire
 Incidence of pests
 Incidence of grazing
 Incidence of weeds
 Incidence of drought, floods and other natural
calamities (if any)
4 Conservation and maintenance
of soil and water resources
 Area under watershed treatment
 Duration of stream flow
 Quality of water
 Ground water level
5 Maintenance and enhancement
of forest resources productivity
 Growing stock
 Status of plantation
 Technology for increasing productivity
6 Optimization of forest resource
utilization
 Extraction and consumption of wood
 Extraction and consumption of fuel wood
 Extraction and consumption of non wood
products
 Utilization of forest environmental services
7 Maintenance and enhancement
of social, cultural and spiritual
benefits
 Sacred groves
 No of trees species traditionally/religiously
protected
 Participation of users in joint forest management
meetings
8 Adequacy of policy, legal and
institutional framework
 Offences related to forests
 No of JFM committee and forest area with them
 Financial transparency
 Allocation of funds for forest protection
 Capacity building

19 Lecture notes on Forest Management by Bishnu P Devkota, 2010

2.1.3 Various forest certification schemes
 1985~1990 – growing concern over the state of the world’s forests, and the
sustainability of extraction of timber and other products
 So the sustainable forest management concept emerged.
 To promote the sustainable forest management identifying the well managed forest,
registration and certification procedures were started.
 So the public is led to believe that products labeled with the logo of sustainable
managed forest are from the environmentally appropriate, socially beneficial and
economically viable source.
 There are questions related to sustainable forest management (SFM) such as, how can
the local people manage forests in a sustainable way?
 How can international population make sure that the products they are buying, is
coming from a forest managed in a sustainable way?
 To answer these questions, NGOs involved in conservation such as, Green Peace,
Worldwide Fund for Nature, Friends of the Earth, etc. thought to establish a
mechanism to encourage sustainable forest management and discourage unsustainable
harvesting.
 Forest Certification is the process by which the performances of on-the-ground
forestry operation are assessed against a predetermined set of standards (Parajuli et al
2003). It is a mechanism for forest monitoring, tracing and labeling timber, wood and
pulp products and non-timber forest products where the quality of management from
environmental, social and economic perspectives is judged against a series of agreed
standards. Forest Certification is intended to improve forest management via market
based initiatives.
 Forest certification intends to decrease negative impacts of forest management. This is
achieved by implementing agreed code of practice known as standards.
Implementation of these codes is verified by an independent or third party institution.
 If forests are sustainably managed, a certificate of responsible forest management is
given to the forest managers. Forest manger can put the logo to identify the product
coming from certified forest. Consumers identify such products from the stamp used
in the product.
 Forest certification refers to two separate process viz. forest management unit
certification (FMU) and chain of custody certification (COC). Forest management
certification is a process which verifies that an area of forest/plantations from where
the wood, fiber and other non timber forest products is extracted in managed to a
defined standard.
 COC certification is a process of tracking forest products from the certified forest to
the point of sale to ensure that product originated from a certified forest.

Forest Certification Systems
There are many forest certification systems in the world.
International/regional systems
- Forest Stewardship Council FSC
- Program for the Endorsement of the Forest Certification (PEFC)
National systems
– European schemes linked to PEFC
– Canadian Standards Association

20 Lecture notes on Forest Management by Bishnu P Devkota, 2010

– Sustainable Forestry Initiative / American Tree Farm System
– Australian Forestry Standards (AFS)
– Finish Forest Certification Scheme (FFCS)
– Developing countries: Brazil (CERFLOR), Malaysia (MTCC)

Forest Stewardship Council
FSC is the dominant system globally. This is an internationally non profit, non
government organization based in Germany, established in 1993 by more than 150
founder members of environmental and human rights groups, timber producer and
manufacturers and wood products buyer, after results of international concerns about
tropical deforestation (FSC 2007). FSC promotes environmentally appropriate, socially
beneficial and economically viable management of the world’s forest. For the process of
certification, it has developed 10 principle and 56 criteria. FSC has two types of
certification. Forest managers or owners who want to prove that their forest operation are
socially beneficial and managed in an environmentally appropriate and economically
viable manner can apply for forest management certification. FSC chain of custody
certification is for companies that manufacture, process or trade in timber or non timber
forest products and want to demonstrate to their customers that they use responsibly
produced raw materials. FSC chain of custody helps companies to strengthen their
sourcing policies and comply with public or private procurement policies where FSC is
the preferred option.
FSC Principles
1. Compliance with Laws and FSC Principles
Forest management must abide by all applicable laws of the country in which they
occur.
2. Tenure and Use Rights and Responsibilities
Rights to the land are clearly defined and clearly established.
3. Indigenous Peoples’ Rights
Indigenous peoples’ rights to own, use, and manage their lands are recognized and
respected.
4. Community Relations and Worker’s Rights
Maintain and/or enhance the long-term social and economic well being of forest
workers and local communities.
5. Benefits from the Forest
Encourage the efficient use of the forest’s resources and services to ensure economic
viability, and environmental and social benefits.
6. Environmental Impact
Conserve biological diversity, water resources, soils, and unique and fragile
ecosystems and landscapes, maintaining the ecological functions and integrity of the
forest.
7. Management Plan
A plan is written, implemented, and kept up to date, including statements of long-term
objectives.
8. Monitoring and Assessment

21 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Monitoring is conducted to assess the condition of the forest, yields of forest products,
chain-of-custody, management activities, and their social and environmental impacts.
9. Maintenance of High Conservation Value Forests
Management activities enhance the attributes of high conservation value forests.
10. Plantations
Plantations should complement the management of, reduce pressures on, and promote
the restoration and conservation of natural forest

The Elements of Forest Certification


















Program for the Endorsement of Forest Certification Scheme (PEFC)

PEFC is in Luxemburg formed in June, 1999 as an Pan European Initiatives with
representative scheme from eleven countries. With the rapid development in its working area
globally, its acronym was changed in 2003 from Pan European Forest Certification to
Program for the Endorsement of Forest Certification Scheme. PEFC is an independent, non-
profit, non-governmental organization, which provides a framework for the development and
assessment of independent third party certification of environmentally appropriate, socially
beneficial and economically viable management of forests. It is playing a global platform for
continents, which are part of PEFC council. PEFC provides a logo for wood based products,
allowing to customers and public to make a positive choice for sustainability forest
management and it claims to deliver sustainability, credibility, accountability and
adaptability.

22 Lecture notes on Forest Management by Bishnu P Devkota, 2010

2.2 Concept and practice of sustained yield
2.2.1 Concept, definition of sustained yield

Sustained yield is defined and /or expressed variously as
 The material that a forest can yield annually or periodically in perpetuity.
 As applied to policy, method or plan of management (sustain yields management), it
implies continuous production with the aim of achieving at the earliest practical time
at the highest practical level an approximate balance between net growth and harvest
by annual or some what longer periods (BCFT).
 The regular, continuous supply of the desired produced to the full capacity of the
forest.(Osmastan)
 The yield of timber or other forest products from a forest which is managed in such
away as to permit the removal of approximately equal volume or quality of timber or
other forest produce annually or periodically in perpetuity.
 Sustained yield may be annual or periodic depending on where a complete series of
age gradations or age mixed together is maintained or only an in complete series.
 Periodic yield is also considered as sustained, provided the period is short.
 Sustained yield is essential where large areas, especially state owned, are concerned;
this ensures continuous yield and safeguards against extinction of forest property,
which is the trust with the present generation-we have a right of use only but not to
lead to its destruction.
 In case of private property, it is not practicable to maintain of complete series of age
gradations such cases the cropped is worked for intermittent yield, which is defined
as: the material or cash return obtained from time to time form a forest not organized
for continuous production.(Glossary).

Concept and Principle of Sustained Yield
 “Yield” signifies the flow of forest products, measured in terms of either volume or
value units, harvested from a forest at a particular time. The yield from the forest
includes all the forest products, the tangible and the intangible, including protective,
amenity, and timber and non- timber products.
 Concept of sustainable yield has been evolved from the basic from the consideration
that the unborn generation may derive from the forest at least as much of the benefits
as the present generation. Sustained yield ensures stability and continuous supply of
raw materials to the industries and to meet social and domestic needs of the people.
 The principle of SY is that forest should be exploited such that annual or periodic
felling does not exceed annual or periodic growth.
 It is an accepted norm in forest management and forms the core of organized forestry.
At the end of 18
th
century and beginning of the 19
th
century, the necessity of
Sustained yield (SY) was propounded in Europe for ensuring regular supply of timber
and fire wood.
 Germany is the pioneer country of the sustained yield.
 Considering forestry from the economic point of view, investment in forestry should
yield continuous return in terms of definite class of produce and in greatest possible
quantity within a reasonable time and to the best financial advantage.

23 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 The simplest method for achieving this objective of sustained yield is to maintain a
complete succession of equal areas of crops of all ages from one year old up to the
age of maturity that is complete series of age gradations.
 For example: say we have 10 hectares of land and 10 years rotation .We plant 1
hectare annually and after 10 years cut 1 ha Annually of 10 years old trees. Hence
equal area will be available for felling at maturity (10 years), this is one form of crop
necessary for sustained yield management and for maintaining it perpetuity.
 Such forest provides a conceptual picture of theoretical normal forest. The idea of the
normal forest is a logical corollary to the principle of sustained yield in perpetuity.
2.2.2 Pre-Requisites for Sustained Yield
 To get sustained yield, forest should be “integrated”, it should be healthy, energetic,
and of all ages mixed together in proper proportion or in one word it should be
Normal.
 Only normal forest is able to produce equal production of its material in each year or
periods. The simplest methods of achieving this objective of sustain annual yield is to
maintain a complete succession of age from year one to the age of maturity, having an
equal or equi- productive area. Great effort is necessary to bring the forest in
normality. The following requirement must be fulfilled for sustained yield
management:
 There should be a normal forest having all requirement parameters as;
 A complete series of age gradations – in case of plantation forest, there should be
complete series of age gradations up to rotation age. Any gap of age will interrupted
the sustained yield.
 All periodic block (PB) should occupy equal or equi-productive area –this is the case
for regular shelter wood system. All PB should be of equal or equi-productive areas
otherwise there would be variable amount of yield from different periodic blocks
instead of sustained one.
 All age classes present in balanced proportion –in irregular selection forest, there
should be well mixtures of all age classes of also that in balanced proportion to ensure
the equal amount of volume production in each year at the time of harvesting.
Although there will be no specific area of harvesting, the yield in sustained manner by
clear selection of rotation aged trees distributed over the whole forest area.
 Sustained yield principle is applicable only to production forests.
2.2.3 Limitations in Nepal conditions
Sustained yield could not be achieved due to its following limitations:
 Not possible to apply SY principle in the first rotation because density and quality of
crop are generally variable due to past management or mal-distribution of age
classes and their composition in mixture and generally comprised of old growth as
well as degraded site condition.
 Virgin forest with a large proportion of deteriorating trees cannot be suitably worked
under SY principle.
 Forest under afforestation programmed provides various yield until after the end of
first rotation.
 Lack of technical man power
 Inflexible to market conditions

24 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 In hill forests, due to variable demand, different interest groups, lively hood concepts,
geographical location, microclimatic conditions, multiple use concepts etc., it is very
difficult to achieve.
2.2.4 Yield types
Yield: The volume or number of stems that can be removed annually or periodically, or
periodically, or the area over which fellings may pass annually or periodically, consistent
with the attainment of objects of management. Yield can be either final yield or intermediate
yield
Final yield: All the material that counts against the prescribed yield and which is derived
from the main felling in a regular forest. It is the sum of the main crop and the subsidiary
crop figures for the given crop age.
Intermediate yield: All materials from thinning or operations preceding the main felling in a
regular forest, or its cash equivalent.
Normal yield: The yield from a normal forest.
Sustained yield: The material that a forest can yield annually (or periodically) in perpetuity.
Total yield: The standing volume of a crop plus the total volume removed in thinning since
its establishment as a more or less even aged stand; or the sum of the final and intermediate
yields.
2.2.5 Management steps for Sustained Yield
Different forest types required different types of treatments to acquire sustainable outputs
such as:
 In clear felling system-cut equal volume of material from equal area annually.
 In uniform shelter wood system – all the periodic blocks occupy equal or equi-
productive area
 In irregular selection forest – all age classes are present therein and balanced
proportion
 In higher rotation, age class may be formed like-10-20, 20-30, 30-40,40-50,etc
 It is considered that for maintaining sustainable yield “variable yield today to ensure
sustained yield tomorrow”. Continuity of harvest, indefinitely, without impairment of
productivity of soil is the core method to obtain sustainable forest management.

25 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Unit-3: Forest valuation methods

 Valuation is placing a value on something.
 Forest valuation is the placing of a value on forest production. This may include
valuing the resources consumed in that production.
 Economic value is one of many possible ways to define and measure value.
 Although other types of value are often important, economic values are useful to
consider when making economic choices – choices that involve tradeoffs in allocating
resources.
 Traditionally economics has been concerned with direct use values focused on
quantifying and analyzing goods and services that produce tangible benefits.
 Economists however, have broadened their scope in recognition of the growing
appreciation for the indirect use, non-use, existence, bequest and option values of
ecosystems and have developed techniques to extend monetary valuations to
ecosystem services (Chee, 2004).
 Measures of economic value are based on what people want – their preferences. Thus,
the theory of economic valuation is based on individual preferences and choices.
 The concept of economic value is now a well established and useful framework for
identifying various values associated with forests.
 The total economic value of forest consists of its use values and non-use values.
 A forest use values are in turn made up of its direct use values, indirect use values and
option values. Non use values include bequest values and existence value (IUCN,
1998).
Thus, use value is defined as the value derived from the actual use of a good or
service, such as hunting, fishing, bird watching, or hiking. Use values may also
include indirect uses. For example, forest provides direct use values to the people who
visit the area. Other people might enjoy watching a television show about the area and
its wildlife, thus receiving indirect use values. People may also receive indirect use
values from an input that helps to produce something else that people use directly. For
example, forests supply water to the downstream users, who use water for drinking or
irrigation purpose.
Option value is the value that people place on having the option to enjoy something in
the future, although they may not currently use it. Thus, it is a type of use value. For
example, a person may hope to visit the forest area sometime in the future, and thus
would be willing to pay something to preserve the area in order to maintain that
option. On the similar way, forest resources may be underutilised today but may have
a high future value in terms of scientific, educational, commercial and other economic
uses. Environmental regulatory functions of the forest ecosystem may become
increasingly important over time as economic activities develop and spread in the
region (Bann, 1997).
Similarly, bequest value is the value that people place on knowing that future
generations will have the option to enjoy something. Thus, bequest value is measured
by peoples’ willingness to pay to preserve the natural environment for future
generations. For example, a person may be willing to pay to protect the forest area so
that future generations will have the opportunity to enjoy it. Bequest values may be

26 Lecture notes on Forest Management by Bishnu P Devkota, 2010

particularly high among the local populations currently using or inhabiting a forest in
that they would like to pass on to their heirs and future generations their life and
culture that has co-evolved in conjunction with the forest.
Non-use values, also referred to as “passive use” values, are values that are not
associated with actual use, or even the option to use a good or service. Existence
value is the non-use value that people place on simply knowing that something exists,
even if they will never see it or use it.
For example, a person might be willing to pay to protect the forest wilderness area,
even though he or she never expects or even wants to go there, but simply because he
or she values the fact that it exists. Existence value is derived from the pure pleasure
in something’s existence, unrelated to whether the person concerned will ever be able
to benefit directly or indirectly from it. Existence values are difficult to measure as
they involve subjective valuations by individuals unrelated to either their own or
others use, whether current or future. However, several economic studies have shown
the existence value of forests to constitute a significant percentage of total economic
value (Bann, 1997).

 Economic valuation can be defined as the attempt to assign quantitative values to the
goods and services provided by forest.
 Valuation is only one element in the effort to improve the management of forest
ecosystems and their services.
 Economic valuation may help inform management decisions, but only if decision-
makers are aware of the overall objectives and limitations of valuation.
 The main objective of valuation of ecosystem services is to generally indicate the
overall economic efficiency of the various competing uses of functions of a particular

27 Lecture notes on Forest Management by Bishnu P Devkota, 2010

forest ecosystem. That is, the underlying assumption is ecosystem resources should be
allocated to those uses that yield an overall net gain to society, as measured through
valuation in terms of the economic benefit of each use adjusted by its costs (Kumar &
Kumar, 2008).
3.1 Common valuation techniques
 Forest Produce a great variety of goods and services for people. Forests have
value to people and contribute to meeting human needs in a number of ways.
 Contribution of forest occurs through
- Direct use of forest
- Indirect use of forest
- The mere existence of the forests or of options for its future direct or
indirect use.
 The value of forest to human being
- Vary from individual to individual and from group to group.
- They can change rapidly over time as individual situation and perception
change.
 In valuation there are two critical points
- There are no absolute economic values other than in the perception of
individual
- These perceptions tend to be dynamic, changing as circumstances change.

Forest Valuation techniques
1. Using direct market prices for goods and services.
 It involves direct observation of market exchanges (or uses available records of part
market exchanges) to determine the value in exchange of particular goods or service.
 It assumes that the value of the goods and services exchanged in a market is at least
equal to the market exchange rate, although they may be higher.

2. Using indirect market price techniques.
a. Residual or derived price.
 This method estimates the value of particular goods or services from the price of
goods or services established later in the production- distribution process. For eg:- the
value of forest products at the farm gate may be estimated by subtracting the cost of
transporting the products from the farm to a market where products or exchange
values are known.
 It assumes that the value of the good or service at the farm gate is at least equal to the
residual value left after subtracting further production, transportation and distribution
costs from market prices.

b. Surrogate prices
 This method estimates the value of a particular goods or service from the known
values on prices of substitute or comparable conditions for eg:- The economic value
of gathered fuel wood could, in principal, be estimated as equivalent to the cost of the
quantity of a alternative purchased fuel, such as kerosene which would provide the
same cooking or space heat.

28 Lecture notes on Forest Management by Bishnu P Devkota, 2010

c. Opportunity costs
 This method estimates the value of opportunities forgone to provide a
particular good or service.
 It assumes that the value is a teast equal to the value of the best alternative forgone to
obtain the desired good or service. For eg:- if dung is used as fuel, the opportunity
cost could be the decrease in crop yields forgone by using the dung for fuel instead of
as a means of condition soils.

d. Hedonic method
 This method estimates values from known values of other goods and services that are
technically related to the good or services to be valued.
 It assumes that the value of a good and services can be estimated from a technical
relationship. For eg:- Housing values may decline the closer one get to a loud noise
such as airport.

e. Travel Cost
 This method recognizes that some good and services the consumer may have to incur
substratical cost (in time or money), to obtain the particular good or service. For eg: A
recreation experience may involve considerable travel expenses; and gathering free
firewood may require a considerable amount of time. It assumes that the value to the
consumer is at least equal to the travel costs the consumer is willing to incur to obtain
the desired good or service.
 Travel cost method (TCM) is one of the oldest approaches to environmental
valuation, proposed in a letter from Harolad Hotelling to the US Forest Service in the
1930s, first used by Wood and Trice 1958, and popularized by Clawson and Knetsch
1966 (Hanley, et al. 2004). This method involves using travel costs as a proxy for the
price of visiting outdoor recreational sites. A statistical relationship between observed
visits and the cost of visiting is derived and used as a surrogate demand curve from
which consumer's surplus per visit day can be measured (by integrating under this
curve) (Hanley, et al. 2004). This method is based on the assumption that consumers
value the experience of a particular forest site at no less than the cost of getting there,
including all direct transport costs as well as the opportunity cost of time spent
travelling to the site (i.e. foregone earnings). This survey based method has been used
extensively, especially in richer countries, to estimate environmental benefits at
recreational sites (including wildlife reserves, special trekking areas and beaches).
TCM has recently been applied in several developing countries, particularly where
higher incomes and rapidly developing markets have been associated with growing
demand for amenities such as scenic views and recreational areas (EEP, 2003).

3. Using non-market price technique.
a. Contingent valuation
 This method is used to estimate the consumer's willingness to pay for a specified good
or service or to accept compensation for receiving an undesired good or service.
 In practice, it is usually desired from the responses of potential consumers to a
hypothetical exchange situation.
 This method assumes that the consumers expressed willingness to pay in hypothetical
situation is a measure of the value to the consumer in an actual situation.

29 Lecture notes on Forest Management by Bishnu P Devkota, 2010

3.2 Time value of Money
 Time is money, particularly when one is growing trees or investing money, because
both grow with time.
 A forest stand will grow with time and with proper management, add increment each
year for many years.
 Funds in a saving account will draw interest and funds invested in capital should also
be earning their interest.
 Invested funds earn interest and this interest can then be invested to earn its own
interest.
 The amount of money originally invested is called the principal amount, and the
amount of money to which it will grow when the interest is added is called the future
value.
 The term payment indicates either a revenue (money received) or a cost (money paid)
 A dollar invested today will be worth more in the future because it earns interest.
 It follows that a dollar received in the future is worth less than a dollar received today
because it cannot be invested and earn interest.
 The future payment is worth less because an opportunity cost of the interest payments
forgone has been incurred.
 Time value of money is a concept to understand the value of cash flows occurred at
different point in time.
 If we are given the alternatives whether to accept Rs. 100 today or one year from now,
then we certainly accept Rs. 100 today. It is because there is time value to money.
 Every sum of money received earlier has reinvestment opportunity.
 Money received at present is prefered even if we do not have reinvestment
opportunity because money that we receive in future has less purchasing power that
the money that we have at present due to the inflation.
 What happens if there is no inflation still, money received at present is prefered, it is
bacause most of us have a fundamental bahaviour to prefer current consumption to
future consumption. Thus,
i. The reinvestment opportunity or earning power of the money.
ii. The (risk of) inflation.
iii. And individuals’ preference for current consumption to future consumption are
the reasons for the time value of money.
Reasons for time value of money.
1. Uncertainly - if an individual is not certain about future cash receipt, he prefers
receiving cash now.
2. Subjective preference - most people have subjective preference for present.
3. Investment opportunities - most individuals prefer present receipt to future receipt
because of available investment opportunities.
4. Inflation - the purchasing capacity of money may go down in the future due to the
inflation.
Importance of time value of money
1. To make investment decision - ling term assets/ capital budgeting decision - Net
present value.
2. To calculate rate of return - comparing return = Risk free rate + Risk premium.
3. To calculate cost of capital: comparing future return with cost of capital.
4. To maintain risk return trade off.
5. To make financing decisions.
: Helpful for financial managers.

30 Lecture notes on Forest Management by Bishnu P Devkota, 2010

3.2.1 Interest rate
 Interest is the return to the owner of capital.
 It is the return that the owner of the man-made assets receives for investing his
money in those assets interest can also the viewed as the cost of the capital for the
person who is using it.
 Interest is the market price of money.
Components of the interest rate
 The simultaneous solution of the supply and demand functions for money sets the
interest rate.
 The interest rate is the price of money.
 The interest rate is the base price of money that is then modified for other qualitative
component.
 Risk is the first major component that modifies the interest rate. It is the amount of
certainly assigned to an alternatives outcome. An investment whose return is difficult
to predict or is unknown is risky investment. There categories - certainly, risky,
uncertainly.
 Grater an investment's risk, the higher the interest rate.
 Liquidity is a second interest rate component. Liquidity is the ease with which an
investment can be ended.
 Liquidity is important for several reasons.
- A liquid investment allows termination of the investment if the predicted
outcome seems incorrect. It reduces risk.
- It allows changing to an investment with a higher return if one should become
available in the future.
 The less liquid the investment, the larger the interest rate.
 Time preference, a third component, is the degree to which an individual or
organization desire current rather than future consumption.
 Individuals usually have shorter time preferences, organization longer and society the
longest.
 Shorter the time preference, the higher the interest rate and the longer the time
preference, the lower the interest rate.
 Transaction costs are the resources consumed in making loans or exchanging money.
 Larger the loan, the smaller the interest rate because transaction costs are fixed.
 The inflation rate expected also affects the interest rate. Prices including the price of
money rise each year during inflationary times.
 Higher the expected inflation rate, the higher an interest rate the investor desires.
3.2.2 Discount rate
 Discounting is the process of finding the present value of an amount of cash at some
future date, and along with compounding cash forms the basis of time value of money
calculations.
V0 = Vn/(1.0+i)
n

Where,
Vn = Future value of a single payment in year n
V0 = Present value of single payment
i = the interest rate
n = the year in which the payment occurs.

31 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 The discounted value of a cash flow is determined by reducing its value by the
appropriate discount rate for each unit of time between the times when the cash flow
is to be valued to the time of the cash flow. Most often the discount rate is expressed
as an annual rate.
3.3.3 Inflation adjustment
 Inflation is important in investment analysis because the dollar provides the
investment returns are different from those that paid for the investment. They are not
comparable because, during inflation, dollars received in later years will not by as
much or dollar received today.
 Inflation effects become more serious the greater the inflation rate. For e.g. in 5 years
a dollar is worth $ 0.86 at 3 percent inflation but only $ 0.54 at 13 percent inflation.
 The seriousness of inflation effect is increased in forestry investments because they
take many years to complete.
 Inflation is a continuous long-term increase in the general level of overall price level
increase. It is not sufficient for just the price of food, or houschgior clothing to
increase.
 The average of all prices must increase. The price increase must also cause a net
increase.
 Increase general prices followed by decreased general prices would not be considered
an inflationary period. The general price level at the end of the period must be higher
than at the beginning.
 The time period needed to consider a period as inflationary is not strictly defined but
is usually understood to be several years.

Measuring price changes
 Price changes are measured by price indices.
 The price index is simply the ratio of the price in a time period to the price in a base
time period.
Algebraically,
PIn = Pn/P0*100
Where,
PIn = the price index in year n
Pn = the price in year n
P0= the price in year zero, the base year.

E.g. The price of sal log/ cft in 1960 was Rs. 95
In 1975, the price rose to NRs. 295.

32 Lecture notes on Forest Management by Bishnu P Devkota, 2010

The 1975 price index is
PI75 = 295/95*100
=310.53

 The price increase shown by the index is interpreted as the percentage increase i.e.
310.53% in the above example between 1960 and 1975.
 This is the percentage increase over the entire time period and not the annual
compound increase.
 The annual compound increase is


= 0.07847
= 7.84%
 Price indices measuring inflation must reflect prices in the whole economy. this is
accomplished by devising a market basket of individual goods, services, and or
commodities that are priced every time period.
 The market basket defines every time period that the index measures. the there major
price indices are the Gross National Product (GNP) deflator, the Consumer's Price
Index (CPI) and the Products Price Index (PPI).

Correcting PNW for inflation
 There are several ways in which cash flows can be corrected for inflation.
 Cash flows are originally stated in year zero or constant dollars, inflated to current
dollars in the year they occur, and are then discounted back to present value using the
market interest rate.

3.3 Decision Making criteria.
3.3.1 Present net worth
 The present net worth criterion is one of two widely used and accepted investment
criteria recognizing the time value of money.
 The PNW is the algebraic sum of hte discounted costs and revenues at a specified
interest rate.
In formula form,
PNW
where,
PNW = the present net worth
Rt = the revenues or positive cash flows in year t.
Ct = the costs or negative cash flows in year t.
t = the year in which the cash flow occurs.
i = the interest rate, usually the alternative rate of return or the cost of
capital. 0.153.310
15
  
 
t
n
t
tt
i
CR


 0.1
0.1
0

33 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 The PNW is interpreted as the present value of the investment's gain or loss at the
specified interest rate.
 An investment is acceptable if the PNW is positive and is not acceptable if it is
negative. This is so because the investment is earning more than the alternative
rate of return when PNW is positive.
 The investment earns less than the alternative rate of return when PNW is
negative. It is better to invest in your alternative with a negative PNW because
you will earn more money.
 Another way of looking at PNW is that all costs are charged interest from the
time they are incurred until the end of the investment and all revenues earn
interest from the time they are received until the end of the investment.
 The algebraic sum of the costs and revenues, with interest is then discounted to
year zero. This is the PNW.
Advantages
i. Net present value method of evaluating the investment proposal recognizes the time
value of money.
ii. It considers all cash flows over the entire life of the project.
iii. It is in consistence with the objective of maximizing the wealth of the firm that leads
to the welfare of the owners of the firm.
Disadvantages
i. It is difficult to use.
ii. It uses cost of capital as discount rate. But cost of capital is quite difficult concept to
understand and measure in practice.
iii. It may not give satisfactory answer when the project being compared involve different
amount of cash outlay.
iv. It may mislead when dealing with alternative projects or limited funds under the
condition of unequal lives.
v. This method emphasis the comparison of NPV and disregards the initial investment
involves. Thus, this method may not give dependable results.

3.3.2 Benefit cost ratio
 It is the ratio of present value of net cash benefit to the present value of net cash
outlay.
 It is calculated by dividing the present value of future cash inflow after tax by present
value of cash outlay.
Bc Ratio = PV of future cash inflows after tax/ PV of initial cash outlay.
Accept or Reject rule
 Accept the project with Bc ratio greater than 1.
 Reject the project if the Bc ratio is less than one.
3.3.3 Land expectation value
 Land expectation value is another decision criterion also known as faustm ann
formula, land rent, soil expectation value.
 Land expectation value is nothing more than a special case of PNW that has certain
restrictive assumptions made about it.
These are;

34 Lecture notes on Forest Management by Bishnu P Devkota, 2010

i. Land value is zero.
ii. the land has no residual stand.
iii. the land will be forested in perpetuity.
iv. the cash flows from the forest will be the same in perpetuity.

Le = Vo×(1.0+i)
n
×1.0/(1.0+i)
n
- 1.0

= Vo×(1.0+i)
n
/(1.0+i)
n
- 1.0

where,
Le = the land expectation value
V0 = the present value of a perpetual periodic annuity that will be received every n
years.
n = the number of years between annuity payments.
i = the interest rate.

 The land expectation value is accepted if it si grater than market price and rejected if
it is less than market price.
3.3.4 Internal rate of return (IRR)
 IRR is the rate of return that an investment projects earns.
 It is that rate which gives the project's NPV zero. It is the rate when applied to
discount the future cash inflow makes the PV equal to the initial cash outlay, i.e zero
NPV.
 It is used when the cost of the project and annual cash inflows are given or known but
unknown rate of earnings is to be determined.
 It is a discount rate that makes the PV of future cash inflows of the project equal to
the cost of project.
 IRR has been defined as the maximum rate of interest that could be paid for the
capital employed over the life of an investment without loss on the project.
-Charles T. Horngren.
 The method considered net cash flow not the net income.
 IRR is found out by Trail and Error method and by interpolating between tried rates.
 IRR is the interest rate that equlizes the present value of hte costs and revenues.
 It is the value of i that causes the following equation to be true.



Where,
IRR = the internal rate of return.
Rt = the revenues or positive cash flows in year t.
Ct = the costs or negative cash flows in year t.
t = the year in which the cash flow occurs.
i = the interest rate when the equation is true and is the IRR.  
 







n
t
tt
t
n
t
t
i
C
i
R
0
0
0.1
0.1
0.1
0.1

35 Lecture notes on Forest Management by Bishnu P Devkota, 2010


Accept, Reject and Ranking of the investment project.
 Accept the investment if the IRR is greater or higher than cost of capital.
 Reject the project with lower IRR than require rate of return.
 Rank the projects form higher to lower IRR.
Merits
1. It considers the time value of money.
2. It takes into account the total cash inflows and outflows.
3. It does not use the concept of the required rate of return/ cost of capital.
4. Provide a rate of return which indicates whether the proposal is profitable or not.
5. It is theoretically a sound method.

Demerits
1. It involves tedious calculation base on trial an error method.
2. It gives multiple rates if the cash flows are non-conventional (investment in last
year) and create confusion.
3. It is generally difficult to understand and use in practice due to complicated
computational problems.
4. Projects selected base on higher IRR may not be profitable one.
5. Single discount rate ignores the varying future interest rate.
3.4 Risk and uncertainly evaluation.
 There are three different conditions under which decisions are made. These are
certainly risk and uncertainly.
 Certainly exists if there is only one outcome for each alternative. The outcome for
each alternative is known; thus choosing the alternative automatically defines the
outcome.
 Risk exists if a probability distribution can be attached to the different states of
nature and hence to the different outcomes.
 The state of nature cannot be predicted for each occurrence but the number of
times each state of nature will occur if the decision is made frequently can be
predicted.
 The probability distributions can come from different sources. They may be based
on historical evidence and records or they may be obtained subjectively by asking
experts for their opinion about the likelihood of states of nature occurring.
 Uncertainly exists if there are no information about the probability distributions of
the states of nature. This means that not even a subjective estimate of the
probabilities can be made by experts.
 Many people believe that uncertainly does not exist under this strict definition.
These people believe that subjective probability distributions can be assigned if
the analyst knows enough about the system to identify alternatives and states of
nature and to predict outcomes for them. They feel it is highly unlikely that all this
information is known but that at a minimum, subjective probabilities are not.

36 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Table: Decision matrix.
Alternatives

States of nature
S1 S2 S3
A1 011 012 013
A2 021 022 023
A3 031 032 033
3.4.1 Risk management
 Risk can be defined as the chance that the actual return can be other than
expected return.
 Risk refers to the variability in the returns form an investment. Higher
variability implies higher risk.
Attitudes towards risk
 Risk and return are two important considerations for investment. All investors prefer
higher return to lower return and lower risk to higher risk.
 Based on investor's attitude towards risk, there are three types of investors.
1. Risk averters - investor prefers the investment with less risk to one with more
risk, assuming both investment offer same expected return. Risk aversion is
the attitude of rational investors. A risk avert investor expects to earn higher
rates of returns on investment of higher risk and lower rates on lower risk
investments.
2. Risk neutral - who don not require changes in their required rate of return for
the changes in risk.
3. Risk seekers - who could reduce their required rate of return for increased risk.
Decision Making
 The Riskiness of an investment is the amount of certainly with which the return
on that investment, including recouping the initial investment can be predicted.
 Riskiness, is defined as the variability of the returns from a proposed investment.
 It is measured by either the variance, or the standard deviation of a probability
distribution of the distribution of the returns on that investment.
The variance of an assets return from historical sample return can be calculated.


Where, 2
j

=Variance of asset j
n= the number of observations (periods) in the sample
rjt = the return on the asset j in period i jr

= the expected return on the asset j 2
12
1











n
rr
n
t
j
jt
j

37 Lecture notes on Forest Management by Bishnu P Devkota, 2010

By Standard deviation





 The distribution may be either empirically or subjectively determined. Some
evaluation techniques use simulation based on very limited subjective data.
 The distributions of expected returns for four investments are shown in figure below
















 These are normal distributions.
 The investment return is measured on the x axis by present net worth. The high points
of the distribution are the mean and provide the best estimate (the point estimate) of
the investment's return.
 The y axis measures the probability that he indicated investment return will occur.
 The point estimates for investments (A and B) are both Rs. 5000. The investor would
be indifferent between these two investments if risk were not considered.
 The distribution show that investment A is far less risky than investment B.
Investment A will never be less than about Rs. 4000 nor more than about Rs. 6000,
while there is a chance that investment B will return o rupees.
 Ordinary, the investor is assumed be a risk averter and would choose investment A
rather than investment B.
 The investor who was not a risk averter that is, was a gambler of the choose
investment B because of the chance of receiving a return as high as Rs. 10,000.
 The return for investments C and D are different. The point estimate for investment C
is Rs. 4,000, while for D it is Rs. 5,000.
 Investment D would be chosen if risk were ignored. The distributions show that
investment C with lower return is less risky than investment D with the higher return.
The decision is ambiguous because the higher return is for the riskier investment. 2
1
2
1
)(












n
rEr
n
t
j
jt
j
j
PNW

Probability


Investment C

Investment D

0

5

4

10

Thousands Rupees

Probability


Investment A

Investment B

5

0

10

Thousands Rupees

PNW

38 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 The standard deviation or variance for each distribution could be calculated and used
as quantitative guidelines of each investments riskiness, however they do not provide
a final decision.
 The choice between these investments depends on how much risk the individual
investor is willing to take.
 The distribution or their means and standard deviations can be estimated either
empirically or subjectively.
 Empirical estimation is based on actual observations of past investments. Studies can
be mad and means and variances calculated. However there must be many
investments with similar to those on which the calculations were based.
 Subjective estimate by the managerial personal families with the proposed investment
may be possible if a normal distribution of returns can be assumed. A 'best estimate'
of cash flow is obtained and used as the distribution mean.
 Variability can be estimated by obtaining judgmental estimates of the likelihood of
the cash flow being more or less than the mean.
3.4.2 Decision making with uncertainly
 Decision models for decision making with uncertainly usually require developing
a decision or pay off matrix.
Alternatives

States of nature
S1 S2 S3
A1 12 8 2
A2 7 5 5
A3 0 10 15
 In the above table, if alternatives 1 are chosen a less of 12 units will occur for state
of nature S1, a loss of 8 units for S2 and a loss of 2 units for S3.
 The minimax criterion, also called the maximin criterion, takes a pessimistic view
of life and seeks to avoid the most objectionable circumstances. The criterion is
called minimax because it minimizes the chance of the maximum loss. The
criterion is to choose the worst possible outcome under each alternative and to
choose the least objectionable alternative from among these.
 The worst possible outcomes in the decision matrix are: S1 for A1 (loss=12); S1
for A2 (loss=7); and S3 for A3 (loss=15) The criterion instructs you to choose A2
because this is where the possible loss is minimized.
 The minimin criterion, also called the maximax criterion, takes an optimistic view
of life and seeks to obtain the highest payoff from those available.
 The criterion is called minimin because it minimizes the minimum payoff.
 It implicitly assumes only the best possible outcomes will occur and picks the best
among them.
 The criterion is to choose the best possible outcomes for each alternative and then
to choose the alternative with the best among these.
 The criterion is to choose the best possible outcomes for each alternative and then
to choose the alternative with the best among these.

39 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 The best outcomes in the decision matrix (above table) are S3 for A1 (loss =2), S2
and S3 for A2 (loss =5) and S1 for A3 (loss = 0). The criterion instructs to pick A3
(loss = 0).
 The criterion instructs to pick A3 because this has the least loss that is the highest
payoff.
 The minimax regret criterion incorporates the idea of opportunity cost into the
decision making process.
 The decision matrix is recalculated to show the amount of "regret" that would
occur in each state of nature if the wrong alternative were chosen.
 The alternative with the minimum loss in each state of nature is chosen as the
most desirable and subtracted from all other outcomes for the state of nature. The
resulting decision matrix decision matrix is then minimaxed.
 In the above table, if S1 prevailed, the best alternative is A3 because that has the
least loss.
 This loss value is then subtracted from all other outcomes in S1 to show the
amount of regret.
Table: Decision matrix for minimax region criterion.
Alternatives

States of nature
S1 S2 S3
A1 12-0=12
*
8-5=3 2-2=0
A2 7-0=7
*
5-5=0 5-2=3
A3 0-0=0 10-5=5 15-2=13
*

*Maximum amount of regret for each alternative
 The rationale is that the decision maker would have no regret if he choose A3 and
S1 prevailed because that is the best he could do.
 The difference between A3 and the other alternatives is the amount of regret
incurred if one of these alternatives were chosen instead of A3.
 The procedure is repeated for the other state of nature, S2 and S3.
 The maximum amount of regret for each alternative is identified in the matrix by
asterisks.
 A2 is chosen as the course of action because it has the minimum amount of regret.
 The principle of insufficient reason states that you should assign equal weight to
each state of nature and choose the alternative with the highest payoff if you know
absolutely nothing about the probabilities of occurrence.
 The criterion require taking the mean payoff for each alternative, which in the first
table is A1 = 7.3333, A2 = 5.667; and A3 = 8.333.
 A2 is chosen because it has the highest payoff (least loss). This criterion is very
close to placing a subjective probability distribution on the state of nature.

40 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Unit-4: Rotation
4.1 Concept and types of rotation
 Agricultural crops are sown, they ripen and are harvested once or twice a year, at the
same time; their period of maturity is easily determined
 Forest Crop:-
• The main forest product (timber) takes a long time to mature.
• Maturity of the tree is generally estimated by the age, size, and growth vigour
• Beyond age/size, quality of timber starts falling off.
• Maturity of timber depends on natural condition of growth and economic condition
4.1.1 Concepts definitions
Definition
 The period which a forest crop takes between its formation and final felling is known
as rotation or production period.
 Rotation or production period is the interval of time between the formation of a
young crop by seedling, planting or other means and its final harvesting ( Osmaston).
 Rotation is the period which elapses between the formation of a wood and the time
when it is finally cut over ( Jerram).

Concept of rotation in regular crops
 The term rotation is correctly applicable to regular crop only.
 In clear- feeling system and plantation, rotation is definite period of interval between
the year of formation and final felling.
 In regular forest in general, entire crops of trees of a sizeable area are felled at a time
(regeneration period in Regular Shelter wood System) when ready for feeling.
 There is more or less, a clear production period which can be planned in advance to
give timber, which satisfies the object of management.
 In Shelter wood system, rotation is fixed for the whole working circle as a unit, as the
average length of time between the establishment of crops and their harvesting.

Some limitations
 Rate of growth will vary with site variation, even for the same species.
 It involves sacrifice of immature trees/crops, as some will not have reached
exploitable size.
 Accident, such as fire, disease, wind-throw may happen, necessitating felling earlier
than planned.
 To obtain desired profits, stand will have to be felled finally at various times
depending on their rate of growth.

Concept of rotation in irregular forest
In uneven aged (irregular) Selection forest, trees are selected individually on their merit for
felling, depending on:
 Qualities of size, vigor and suitability for markets.
 Adjustment of proportion of different sizes.
 Silvicultural principles, e.g. removals of inferior stems in favor of better ones.
 Such a system clearly has greater flexibility, and enables forester to adopt feelings to
suit different rates of growth caused by variation in site or species.

41 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 Moreover, forest is a perpetual entity and never suffers complete clearance of trees
on any part of the area, except periodical thinning. Therefore,
- Size being the criterion for felling, age is known, and
- There being no final harvesting, there is no rotation as defined above.
 However, one could say that its rotation period is equal to that of the average age of
the exploitable size trees removed- the exploitable age, at which they attain the size
required to fulfill the objects of management.
 Maturity in selection forests is related to size, and exploitable size is fixed for
removal of individual trees.
 Size should be used as a standard for exploitability, and not age.
4.1.2 Types of Rotations
 Rotation is an important factor in the regulation of yield and proper management of
the forest as a whole.
 It depends mainly on the objects of management.

Types of rotation

1. Physical Rotation
 It is the rotation, which coincide with the natural lease of life of a species on given
site.
 The natural life span of trees varies greatly with species and site factors. This rotation
is applicable only in case of protection and amenity forest, park lands and roadside
avenues.
 It is very variable, fairly long and also indefinite.
 It is also interpreted as the rotation in which the age up to which the trees remain,
sound, or produce viable seed in high forest and in coppice crops, can put forth
reliable coppice shoots.
 This rotation is not of any relevance to economic forestry.

2. Silvicultural Rotation
 It is the rotation through which a species retains satisfactory vigor of growth and
reproduction on a given site.
 It can neither be lower than the age at which trees start producing fertile seed in
sufficient quantity, nor beyond the age when they stop doing so.
 It is not only long but has very wide range of limits.
 It is useful in forest managed primarily for aesthetic and recreational purpose, where
large old trees with accompanying regeneration provide scenic beauty.
 It is similar to physical rotation.

3. Technical rotation
 It is the rotation under which a species yields the maximum material of a specified
size or suitability for economic conversions or for special use.
 It aims at producing the maximum material of specific dimension/quality for specific
purpose, such as railway slippers, saw logs etc.
 Since trees in a crop may yield different assortments of material, and the trees may
attain given size at different times, it provides no point for fixing the rotation.

42 Lecture notes on Forest Management by Bishnu P Devkota, 2010

4. Rotation of maximum volume production
 It is the rotation that yields the maximum annual quantity of material: i.e the age at
which the mean annual increment ( M.A.I) culminates.
 MAI refer to the stand but not that of individual trees. The length of the rotation will
coincide with the year when the average or volume increment per unit area reaches
the maximum i.e . the age indicated by the point of intersection of CAI and MAI.
 This rotation is particularly suitable for adoption where the total quantity of woody
material is important and not the size specifications, eg. firewood, raw material for
paper industries.
 If rotation is r, final yield Yr and volumes of thinning at various ages Va, Vb, Vc etc.
then the age at which





is the maximum, is the rotation of maximum of volume production.









5. Rotation of highest income/revenue
 It is the rotation which yields the highest average annual gross or net income
irrespective of the capital values of the forests.
 It is calculated without interest and irrespective of the time when the items of income
or expenditure occurs.
Mean annual net income/unit area

Where, Yr = value of final felling (final yield) per unit area
Tr = Value of thinning during rotation period R, per unit area
C = Cost of formation of stand, per unit area.
e= annual cost of annual administration/ maintenance, per unit area
r = rotation (year)
 The rotation at which the net revenue as calculated is maximum, is the rotation of
highest revenue/income
 This rotation is important from the overall national point of view.
r
vYr
IAM

... R
eCTrYr 

43 Lecture notes on Forest Management by Bishnu P Devkota, 2010

6. Financial rotation
 It is the rotation which yields the highest net return on the invested capital.
 It differs from the rotation of highest net income in that all items of revenue and
expenditure are calculated with compound interest at an assumed rate, usually the rate
at which the gov. is able to borrow money.
 It is the rotation which gives the highest discounted profit, usually at its
commencement.
 Is the rotation which is most profitable.
 It is rotation which gives the net return on capital value.

4.1.3 Choice and length of rotation
For considering the choice of most suitable rotation under different social, silvicultutal
and economic conditions, the above mentioned types may be subdivided into three main
groups, which satisfy three broad objectives.
1. Rotations controlling the supply of certain services- i.e the silvicultural and physical
rotations.
2. Rotation controlling the output of material forest products in form or quality- i.e the
technical and maximum volume production rotations.
3. Rotation controlling the financial returns, i.e the rotation of maximum gross or net
income and financial rotation.
Before making a choice of suitable rotation, the forester has to carefully consider the
following:
i. Objective of management
ii. Silvicultural requirement of the species’
iii. Productivity of site
iv. The market demand and /or rational requirements
v. Socio-economic policy of the state/labor conditions employment’s etc
vi. Financial and economic aspects

Length of Rotation
The length of rotation depends on;
 Rate of growth:-Species, Fertility, Thinning
 Silvicultural characteristics of the species:- Life span, Seed production age etc.
 Response of the soil:-Exposure, Biotic influence etc.
 Economic Considerations:- Cost, Price, Time
 Social condition:- socioeconomic, employment, Policy

Why Rotation is Important?
 It is a part of planning and hence ease in management
 It fixes the time of harvest for specific purposes.
 It guides to provide maximum benefits from a limited resources.
 Regulation of Yield
 It fixes the size/quality of trees for specific purposes
4.2 Rotation determination methods
4.2.1 Biological Criteria:- Insects, Disease, Fire, Mean Annual Increment

44 Lecture notes on Forest Management by Bishnu P Devkota, 2010

4.2.2 Financial / Economic Criteria:- Money Yield Table, Forest Rent, Land Expectation
Value, Present Net Worth, Internal Rate of Return, Financial Maturity

4.2.3 Social /Environmental Criteria:-Weather,
Labor available, User’s need

4.2.2 Financial / Economic Criteria
1. Mean Annual Increment (MAI)
The MAI is the total volume per acre divided by the age of the stand at that time.
MAI= YA /A

Where, MAI= mean annual increment
A= the stand age
Y= yield or volume of wood that will be harvested at age A
 The MAI criteria does not directly consider the value of the products produced.
 It does not take into account direct production cost.

2. Money Yield Table
 Different prices over time are often assumed for the money yield table.
 Money yield table is used to maximize total revenue in a single rotation, but not over
time.
 Neither production cost nor the time value of money is taken into account.

3. Forest Rent
 It is the average net income per year and is calculated by subtracting cost per acre by
revenue per acre, divided by age.
FRA = TRA  TCA
A
Where,
A = Age of the stand
FR = Forest rent in year A.
TR = Total Revenue from harvesting the stand at age A, the money yield table
TC = Total cost of growing the stand to Age A.

4. Land Expectation Value
 Land expectation value is nothing more than a special case of PNW that has certain
restrictive assumptions made on it. These are
− Land value is zero
− The land has no residual stand
− The land will be forested in perpetuity.
− The cash flows from the forest will be the same in perpetuity.


Where,
Le= the land expectation value
Vo= the present value of a perpetual periodic annuity that will be every n years
n= the number of years between annuity payments
i= the interest rate 0.1)0.1(
)0.1(



n
n
oe
i
i
VL

45 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 The criteria consider all cost and revenue except land cost.
 If maximum Le is found at year 20 which is indicated as the rotation age.
 Time value of money is considered, which is important in determining rotation age.
 Le has shorter rotation than MAI criterion

5. Present Net Worth
The difference between the PNW and the Le criterion is that land and its subsequent sale
are included in PNW and the analysis is made for a single rotation.
 It considers all future costs & revenue as well as time value of money.
 PNW is perhaps the most widely accepted single criterion for management, and
hence recommended single criterion for rotation determination.




Where,
PNW= Present net worth
Rt= the revenue or positive cash flows in year t
Ct= the cost or negative cash flows in year t
t= the year in which the cash flows occurs
i= the interest rate

6. Financial Maturity
 A timber tree or individual tree is financially mature when the increase in selling
value in the periods between cuts is equal to the alternative rate of return (ARR)
 These calculations are done prior to each time a stand or tree might be cut and cover
the period until the next time a cut might occurs.
 It offer by the authors as a field guide








Rotation and conversion period
 The term Conversion is defined as “a change from one silvicultural system or one (set
of) species to another”.
 Conversion period is “the Period during which a change from one silvicultural system
to another is effected and/or from one species to another”.
 Rotation and conversion period are basically two entirely different terms.
 Conversion period is indicated where a change in silvicultural system is contemplated,
or where a forest is brought under scientific management for the first time, and no
rotation can be calculated or applied straight away for various reasons.  
 

n
t
ttt
i
CRPNW
0 )0.1(
0.1

46 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 While it is necessary to fix a rotation in case case of regular forests, it is not so with
conversion period, the latter is fixed where it is considered necessary to minimize
sacrifice.
 Conversion period is fixed only when a change has to be made from one system to
another whereas rotation is a must for the scientific management of any forest.
 Conversion period is usually less than rotation, may be sometimes even more than
rotation, but when equal, it is not distinguished. The greater the differene between the
conversion period and rotation, greater is the sacrifice and more difficult it is to bring
the forest on to the conetemplated rotation at the end of conversion period.
 Conversion period is usually kept less than rotation when it is desirable to remove the
mature crop earlier than the rotation period due to;
i. Crop not likely to survive the full rotation period.
ii. Crop has suffered from some injury.
iii. Crop is very openly or irregularly stocked.
iv. Crop is putting on small increment
v. Advance growth is already present on the ground and , therefore, time required for
replacement of mature crop by new one can be shortened.
 Conversion period is a very important consideration. When conversion period is short,
the conversion proceed with a fast pace or speed; on the other hand, if it is long, the
conversion is slow. The following considerations affect the decision about the length
of conversion period.
i. Sacrifice of immature crop
ii. Proportion of the over mature growing stock with negative increment.
iii. Gap between the age of first converted crop and the exploitable age at the end of
conversion period.

Purpose of conversion
1. Change in crop composition
 Increasing yield of the existing forests
 to meet the sharply increasing demand of industrial materials
• paper industry
• Packing case industry
• Cigarette industry
2. Change in silvicultural system
 Change in mode of regeneration
 Change in the character of the crop without change in mode of regeneration
 Advantage of particular system
 Failure of an existing system
 Advances in silvicultural knowledge and perfection of regeneration technique
 Development of communications and increase in demand

Some examples of conversion in Nepal
1. Conversion of coppice forest to high forest (Sal) in Shankar Nagar, Butwal by
Department of Forest Research and Survey
2. Conversion of natural forest to plantation forest (degraded sal forest) in Sagarnath by
Sagarnath Forest Development Project.

47 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Unit-5: Forest regulation

 Forest regulation determines the what, where, and when of timber harvesting on the
managed forest.
 The regulation decisions indicate what species and how much of them should be cut.
 The heart of any forest regulation plan is to indicate the time period, most commonly
the 5-year period in which the timber should be cut.
 Forest regulation decisions are far-reaching and ubiquitous, they determine both the
timber and non-timber products obtained from the forest.
 A regulated forest is one that yields an annual or periodic crop of about equal volume,
size and quality.
 Forest regulation consists of manipulating forest lands and growing stock to best
achieve the forest owner’s yield objectives.
 The necessary condition for a regulated forest is the periodic yield, not the quantity
or degree of site utilization.
 Regulating a forest is often a main forest management objective. The regulated forest
is desired to obtain a sustained yield of forest crops.
 However, depending on the current forest condition, sustained yield may not occur
for many years.
 Regulation of a forest may cause opportunity costs in other management objectives,
such as even current wood flow, maximizing PNW, or maintaining scenic vistas.
 Thus, forest regulation consists of manipulating forest lands and growing stock to
best achieve the forest owner’s yield objectives.
5.1 Concepts and approaches
5.1.1 The normal forest concept
 A normal forest is an ideal state of forest condition, which serve as standard for
comparison of an actual forest estate, so that the deficiencies of the later are brought
out for purposes of sustained yield management.
 On the given site, and for a given object of management, it is a forest which has an
ideal growing stock, an ideal distribution of age-classes of the component crop and is
putting on an ideal increment.
 From such a forest, annual or periodic yields equal to the increment can be realized
indefinitely, without endangering future yield and without detriment to the site of
perfection, serving the purpose of good scientific management.
 “ A forest which, for a given site and given objects of management, is ideally
constituted as regards growing stocks, age class distribution and increment, and from
which the annual or periodic removal of produce equal to the increment can be
continued indefinitely without endangering future yields. A forest which by reason of
normalcy in these respects serve as a standard of comparison for sustained yield
management "(Glossary of Technical Terms).

Normality Concept not absolute: related to treatment and rotation
 As a result of growth of trees, harvesting and other unforeseen influences, the
condition of forest changes.
 Even if normality ideal condition is achieved in a forest, it is seldom possible to
preserve it for a long time.

48 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 There is no absolute normality, remaining unaltered everywhere in the forest, and for
all time, but only a relative one which corresponding best to the circumstance for the
time being.
 The Normal forest is purely an artificial conception developed to meet the needs of
forest management.
 No virgin forest is normal. The nearest approach to theoretical normality is made in
plantation, which are entirely artificial.
 There is no such thing as absolute normality is related to both rotation, and the system
of management.
 What is normal increment, normal age-classes and normal growing stock for a forest
on a sixty-year rotation is obviously not normal for a hundred-year rotation.
 Similarly, the data for normality may vary for a coppice forest, an even aged high
forest and a selection forest, although the species, the site and the rotation may be the
same in all classes.
 The normal forest is created not by nature, but by progressive scientific treatment. It is
a mathematical abstraction, on which all methods of yield regulation are based.
 The normal forest and its management can be demonstrated by assuming a 25 hectare
forest on a 25 year rotation with 25 stands, each 1 year older than the next. The site is
equal on all stands.
 Each stand is cut on January 1 of its 25
th
year and instantaneously regenerated.
 In figure 1, stand A1 is one year old in 1975, 2 years old in 1976, 3 years old in 1977
and 25 years old in 1999.
 The sequence starts in 1975. A normal age class distribution exists because there are
25 stands, each varying in age by an equal interval, the oldest being equal to the
rotation age. Their productivity is equal because the site and stocking are equal on
each stand.
 On January 1, 1976, stand E5 is cut, because it has reached rotation age, and is
instanteously regenerated to normal stocking.

 This harvesting sequence continues in perpetuity. The oldest stand is cut each year
and regenerated. The flow of wood from the forest is constant and equal because each
stand is the same or equally productive.

49 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 A normal forest and a regulated forest are not the same thing. The difference is that
all normal forests are regulated but not all regulated forests are normal.
 A normal forest is a sufficient condition for regulation but it is not a necessary
condition. A forest may be regulated but not normal.
 A normal forest is a maximum concept (maximum increment) and deals with an even
aged forest.
 A regulated forest may be even or uneven aged and need not produce maximum
increment. Thus a normal forest is a special case of a regulated forest.

Normality in regular/even aged forests
 The clear felling system, in which all age gradations from one year to rotation age are
present, each occupying equi-extensive/equi-productive areas, in which the rotation
age coupe is felled and regenerated every year, offers the simplest example of a
conventional normal forest, capable of giving annual sustained yield.
 It is not at all necessary, though desirable, that each age-gradations be in one compact
area, it may be scattered among other age gradations throughout the forest, provided
the total area is correct.
 Except when the rotations are very short, as in coppice system and /or plantations of
some fast growing species, it is seldom practical to distinguish between age
differences of only one year, specially where regeneration is mainly natural. In such
cases, five, ten or even more age gradations may be grouped together to form an age
class.
 Shorter the regeneration period, narrower will be the age class range and more even
aged the stand; conversely, longer the regeneration period, wider will be the age class
range and less even aged the stand.

Normality in irregular/unevenaged forests
 The number of trees in each size class can ascertain normality of an uneven-aged
selection forest; it must have a normal series of size-gradations of the normal even-
aged.
 In addition, it must have the normal volume and normal increment, as well as the
amount of irregularity per unit area that is deemed to be most satisfactory.
 About irregular selection forests, some people even think there can be no normal
selection forest; this of course is incorrect. It is true that it is easy to visualize a
normal forest of pure, even-aged, density stocked stand, each age occupying separate
areas arranged in a sequence.
5.1.2 Yield tables and yield regulations
 Yield table is a tabular statement which summarizes on per unit area basis all the
essential data relating to the development of a fully stocked and regularly thinned
even aged crop at periodic intervals covering the greater part of its useful life.
 It differs from the volume table in the sense that while the volume tables gives the
volume of an average tree by diameter and/or height classes, yield tables gives
different parameters of a crop such as number of trees, crop height, crop diameter,
crop basal area, volume of standing crop, volume removed in thinnings, MAI, CAI
etc. It gives all the quantitative information regarding development of a crop.
 Yield table is not applicable to uneven aged forest because in its present form it has
been compiled from even aged pure crops and therefore applicable to them alone.

50 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 Yield tables have not been prepared so far for unevenaged crops because of the
difficulties involved and the main difficulty is that there is no one representative
average age.
 Some tables have been prepared for such crops but they show the ratio of increment
(current or mean annual) to help in deciding the policy of management.

Kinds of yield tables
Yield tables are further classified on the basis of the grades of thinning and whether the
outturn is expressed in volume or value.
(a) On the basis of the number of grades of thinnings used
1. Single yield table: It is an yield table in which parameters have been given only for
one grade of thinning which is usually c grade.
2. Multiple yield table: These are yield tables in which data are given for different
grades of thinnings.
(b) On the basis of volume/value given
1. Volume yield table: It is an yield table which expresses outturn in terms of volumes.
2. Money yield table: It is an yield table constructed from volume yield table in which
outturn is expressed in terms of money instead of volume.
(c) On the basis of applicability
1. Normal Yield Table
 A normal yield table is based on two independent variables, age and site (species
constant), and applies to fully stocked (or normal) stands.
 It depicts relationships between volume/unit area together with other stand parameters
and the independent variables.
2. Empirical Yield Table
 In contrast to normal yield tables, empirical yield tables are based on average rather
than fully stocked stands.
 The resulting yield tables describe stand characteristics for the average stand density
encountered during the collection of field data.
Normal and empirical yield tables essentially have the same limitations, namely:
 The difficulty of locating fully stocked stands or representative average stocked
stands from which to collect the basic data;
 Stocking may not have always been 'fully stocked' or 'average';
 The problem of selecting correction factors to apply to stands of density other than
normal or average.
3. Variable Density Yield Table
 The limitations listed above for normal and empirical yield tables led to the
development of techniques for compiling tables with three independent variables,
stand density being included as the third variable: hence the term variable density
yield tables.
 Basal area/area, mean diameter or other stand density indices are used to define the
density classes.
 Such yield tables are particularly useful for abnormal stands e.g. abnormal due to
early establishment problems, insect and fungal attack, drought, fire, fluctuating
demands for produce, etc.

51 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Application and use of yield table
1. Determination of site quality or fractional site quality.
2. Estimation of total yield or growing stock.
a. Estimation of total yield or growing stock at present age.
b. Estimation of total yield or growing stock at some future age of a stand
3. Determination of increment of stand.
4. Determination of rotation.
5. Preparation of stock map by site qualities.
6. As a guide to silvicultural thinnings
a. Number of stems corresponding to a given age.
b. Number of trees corresponding to a given crop diameter.

Yield regulation
 A term generally applied to the determination of the yield and the prescribed means of
realizing it.
 It means the fixing in advance, usually for a short period – the working plan period –
the amount of timber or other produce which may be removed from the forest,
annually or periodically (Amatya and Shrestha, 2002).
Yield regulations involved two functions
i. Calculation/ determination of amount of yield and prescribing the means of achieving
it.
ii. Construction of a cutting (felling) plan
Correct regulation of yield is one of the main functions of sound forest management.
The objects of regulating yield, in short, are
 To cut each crop or tree at maturity
 To obtain maximum yield of the desired produce
 To cut, approximately, the same quantity of material annually or periodically and
 To limit the area to be felled to that which can be regenerated.
The yield is usually regulated for the period of the working plan.
5.2 Regulating plantation forest (even aged forest)
5.2.1 Concepts
 Even aged forests are ‘those forests which are composed of even aged woods’.
 The term even aged used in this definition is applied to a stand consisting of trees of
approximately the same age.
 Differences up to 25% of the rotation age may be allowed in cases where a stand is
not harvested for hundred years or more (Khanna, 2004).
 Even aged forests and their management predominate in forestry for two good
reasons.
 First, the most important commercial tree species are generally intolerant and hence
are found and best managed in even aged stands.
 Second, economies of scale make it less expensive to reproduce and harvest even
aged stands.
 Even aged management is keyed to the periodic birth and death of stands as
determined by rotation age.
 While rotation age is surely the dominant decision, many others are needed to
characterize the structure, quality, and growth of stands on each unit of area.

52 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Decision needed in even aged management (Davis and Johnson, 1987)
1. Rotation length: The interval between one regeneration harvest and next regeneration
harvest. The stand age at final harvest and the rotation interval between harvests are
the same if new trees are successfully established the same year as the existing stand
is harvested. If the establishment is delayed, age of harvest is less than the rotation
and if advanced regeneration is considered as final crop for next rotation then age of
final harvest is more than rotation age.
 The regulatory rotation age is the number of years between final harvest cuts. This is
the number of years that would be used in cash flow analysis.
 The cutting rotation age is the age of the timber stand when it is cut.
 Cutting rotation age may be less than ( in clear cut system where land is left fallow
for 1 or more years before stand establishment), equal to (new stand established
immediately) or greater than (reproduction is established prior to harvest, shelterwood
system) the regulatory rotation age.
2. Commercial thinning: The number and timing of entries and the amount and kind of trees
removed at each intermediate entry prior to regeneration harvest.
3. Species for regeneration: Species and genetic stock selected to regenerate each stand type
in the forest.
4. Site preparation and regeneration method: The combination of pre and post harvest
treatments scheduled to establish the desired species and control early growth.
5. Other cultural treatment: Pre-commercial thinning, release and fertilization.
In a simplest case, a regulated even aged forest is composed of single species in a uniform
site giving equal growth under same management intensity with each age class forming one
stand type.
5.2.2 Application
Strategies for Even Aged Forest Regulation
 Given the existing forest and a conception of the fully regulated forest that we would
like to achieve, classical timber management scheduling addressed the questions of
how many area and much volume to cut.
 Over the years of forest management history, several methods for determining cut
were developed. Most of these methods fall into one of following two categories.
A. Area Control
 The principle of area control is very simple: harvest and regenerate the same number
of area each year or period that would be harvested in a fully regulated forest.
 The resultant volume harvested is defined by the timber on the area scheduled for
cutting each year.
 The unmodified area control method is best suited if productivity and stocking are the
same in all areas of forest.
 However, site and stocking rate in a forest are seldom equal and unmodified area
control can cause large fluctuation in annual volume harvested.
 A hypothetical 7000 ha Teak forest, with age distribution is as shown in table 1, is
used as an example.
 Assume that rotation of that forest is 70 years. One hundred hectares would be desired
in each age from 1 to 70 years.

53 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 The regulation objective is to rearrange these age classes to obtain a normal or near
normal age distribution by manipulating the cutting schedule. A comparison between
the actual and desired age class distribution can be made by noting that seven age
classes are desired; therefore 1000 ha (7000/ 7 age classes) are desired in each age
class.
 Years to cut = Sum of ha to be cut(41-50 to 71+ age classes)/Ha to be cut every year
= (2500+1250+1250) / 100 = 5000 / 100 = 50 years
 Thus, it would take 50 years to cut all ha from those in oldest stand back down to
those currently in the 41-50 age class.
 Calculating the age distribution of uncut stands is uncomplicated. The current age
distribution can be thought of as occurring at time period zero (t = 0) and age
distribution 50 years in the future at t = 50 will be examined.
 Table shows the age distribution after 50 years of harvest.
Age distribution calculations at t=50
Age class at t=0 Age class at t=50 Area in ha
1-10 51-60 750
11-20 61-70 250
21-30 71-80 250
31-40 81-90 750
41-50 1-10 1000
11-20 250
51-60 0 0
61-70 11-20 750
21-30 500
70+ 21-30 500
31-41 1000
41-50 1000
Table 1: Age-distribution for hypothetical teak forest
Age class Ha Age class Ha
1-10 750 41-50 1250
11-20 250 51-60 0
21-30 250 61-70 1250
31-40 750 71+ 2500
Total 7000

54 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 After a full rotation, the forest is completely regulated, with an equal number of areas
in each age class. Following are some advantages and disadvantages of area control
method.
Advantages
i. It is easy and simple to apply.
ii. Leads to absolute regularity of age gradations.
Disadvantages
i. It is very rigid; every change of rotation will necessitate re-division of the coupes.
ii. Prescribe felling without considerations of the crop condition.

B. Volume Control
 Volume control is a method of determining the annual cut or harvest by specifying the
volume of wood to be cut each year.
 There are many formulas that can be used to determine volume to harvest, e.g.,
Hundeshagen’s formula, Von Mantel’s formula, Austrian formula, etc.
 Volume control calculations usually require knowing total growing stock volume and
better suited for uneven aged forest management. It does not specify the location
where the given volume of wood to be harvested.
1. Method Based on Current Growing Stock and Potential Growth
 One elementary approach to volume control requires only an inventory of the existing
forest and the potential growth of the managed forest of the future.
 Growth is assumed to be proportional to its inventory in the same ratio that growth is
proportion to inventory in the regulated forest.
Hundeshagen’s Formula
 In general, forest stands are assumed to have normal or full stocking, which is seldom
in practice, and therefore yield tables estimates must be adjusted for under stocked
forest.
 Hundeshagen’s formula is simply a proportion in which the yield is assumed to have
a straight line relationship with growing stock.



Where,
Ya= Actual yield
Ga= Actual growing stock
Yr= Yield in fully stocked forest at rotaion age
Gr= Growing stock in fully stocked forest at rotation age
2. Method Based on Growing Stock Only
Von Mantle’s Formula
 Von mantle’s formula is sometimes called as triangle formula because of its
derivation and which is an extension of Hundeshagen’s formula and eliminates the
need of yield table. Basic assumption for this formula is that, in a regulated forest,
growing stock increases in a straight line with age. The existence of rotation age as a
variable implies that the formula be used only on even aged stands. Growing stock
can then be expressed as a right angle triangle. The formula is,


Where,
Gr = Volume of growing stock at rotation age R = Rotation age Yr = Yield at rotation age Gr
Yr
Ga
Ya
 2
RYr
Gr

55 Lecture notes on Forest Management by Bishnu P Devkota, 2010


3. Method Based on Growing Stock and Its Increment
 Current growing stock is rarely sufficient to establish an adequate volume control
without considering current increment; the two measures have often been combined
for yield regulation.
Austrian Formula
 This formula combines increment with a means of adjusting the volume of the
growing stock either upward or downward. The formula in general terms is,


Where,
I = annual increment
Ga = Present growing stock
Gr = Desired growing stock
a = adjusted period in years, which may be a full rotation

Hanzlik Formula
 This formula was originally developed to meet a common problem in the even aged
Douglas-fir stands of the Pacific Northwest: initiating management in unregulated
forests that had contain mostly old growth. The formula is,



Where,
Vm = Volume of merchantable timber above rotation age
R = Rotation adopted for future stand in years
I = Forest Increment

Some terminology
Working circle: A forest area (forming the whole/ part of a working plan area) organized
with a particular objective and subject to one and some silv. system and same set of working
plan preparations. (Plantation w.c.,Reg
n
. w.c.)
Felling series: A forest area forming the whole/part of a w.c. to
1. Distribute felling and regeneration and suit local conditions
2. To maintain/create normal distribution of age classes. (when w.c. is undivided, it is
F.S.)
Coupe: In clear felling system, a F.S. is divided into a number of annual coupes (annual
felling areas), equal to no.of years in rotation. Size of each coupe= A/R ha (A=area (ha) of
F.S. R=Rotation)
Cutting sections: A sub-division of F.S. for regulating cuttings in some specified manner.
-A planned separation of fellings in successive years (4/5 years)
(To avoid fellings for danger of fire, insect attack in successive coupes)
a
GrGa
ICutAnnual

. I
R
Vm
CutAnnual ..

56 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Even Aged Forest Regulation under Different Silvicultural Systems
 Silvicultural system is a method of silvicultural procedure worked out in accordance
with accepted sets of silvicultural principles by which crops constituting mature
forests are harvested, regenerated, tended and replaced by new crops of distinctive
forms (Khanna, 2004).
 Two silvicultural systems (i.e., clear felling system and shelterwood system) in high
forest system produces even aged forest condition, so yield regulation under these two
systems are dealt here.

A. Yield Regulation in Clear Felling System
 Clear felling system is that silvicultural system in which equal or equi-productive
areas of mature crop are successively clear felled and regenerated and the crop
obtained is regular / even aged in which age gradations are determined by area.
 Yield regulation can be obtained by two methods under clear felling system.

1. Annual Coupe by Gross Area
 This is the oldest and simplest form of regulating yield from a forest and was first
applied in France in the 14
th
century. Initially it was applied to coppice crops worked
on short rotation up to 20 years.
 Here in this system, the area of forest or the felling series (say A ha.) is divided into a
number of annual coupes equal to the number of years in the rotation (R). Area of one
coupe to be felled in every year is A/R ha.
 This method of yield regulation will ensure equal sustained yield in the second and
subsequent rotation (if there are no unforeseen accidents), though it may not in the
first. Annual coupes, so formed, which are equal in ground area, are known as equi-
extensive coupes.

Applications:
 It was first applied to coppice crop worked on short rotation, up to 20 years,
subsequently, with the introduction of coppice with standard system; this method was
applied to coppice with reserves. This method is now equally applicable to high forest
worked on clear felling and artificial regeneration as in Nilambur (Kerala) Teak
plantation.
 In India, this method is widely adopted in plantations particularly those coppiced for
fuel wood.
 This method regulates the final yield i.e. felling in areas to be finally felled at rotation
age and regenerated. It doesn’t take into account intermediate yield from cleaning,
and thinning in the younger crops.
 This method is widely used in areas where there is profuse regeneration.

2. Annual Coupes by Reduced Area
 Since the density and site quality may vary from coupe to coupe, reduction factors
should be applied for equalizing annual yield and areas allotted to each coupe, made
equi-productive rather than equi-extensive.
 This method gives better result than above method and also a modification to
implement in different site qualities.

57 Lecture notes on Forest Management by Bishnu P Devkota, 2010

B. Yield Regulation in Regular Shelterwood System
 Regular shelterwood system is that system in which the mature crops are removed in
series of operation and the resulting forest is even aged in which age classes are
recognized by area.

1. Yield Based on Area Allotments by Periods
 This is similar to regulation by fixed area but is less rigid.
 It differs in that the felling area is not permanently fixed on the ground, in the order of
felling, but instead compartments or sub compartments are allotted to various periods
of rotation.
 Rotation is divided into a number of convenient periods (depending on regeneration
period, 10-30 years).
 Area allotted to various periods is known as period blocks (PBs.). All PBs are of
equal or equi-productive areas.
 This method is also known as ‘Periodic Block Method’. Allotment to PBs may be
permanent (Fixed PBs), Revocable, Single or Floating.

i. Permanent Allotment Method
 The method consists of permanent allocation areas in all the PBs. This arrangement of
PBs is possible in forests where regeneration presents, no difficulty and accidents do
not upset the time schedule.

Where,
P = regeneration period
A = Area of Felling Series.
R = Rotation.
 The area may be Gross area where crop and growth condition are uniform in regular
forest or reduced area, for quality. In this method, instead of annual coupes, we have
periodic coupes and annual yield is fixed by volume.
ii. Revocable Allotment Method
 In this method rotation is divided into periods (suitable regeneration period) and the
felling series into corresponding PBs.
 The compartments are allotted according to their average ages, and if necessary,
adjustments are made to equalize the area of various PBs.
 Only the regeneration block (PB I) is of immediate importance and it is definitely
allotted whereas the other PBs may be re allotted at each revision, if necessary
according to the crop condition at that time.
 The chief feature of this method is that the allotment of PBs, made in one period, may
be changed in the next.
 It is more realistic and flexible. For this reason, periodic blocks may not necessarily
be self- contained. They may sometimes be scattered.
iii. Single Allotment Method
 In this method, the area is allotted to the current regeneration block only.
 In this case, the period, as also the area of single PB, is still fixed.
 The only gain in elasticity lies in the fact that the remaining PBs are not allotted.
 This method is only a step to the method of Floating PB, in which neither the area of
the PB nor the period is fixed in advance.
P
R
A
PBofArea ....

58 Lecture notes on Forest Management by Bishnu P Devkota, 2010

iv. Floating Periodic Block (FPB) Method
 This method consists of the allotment of areas ripe for regeneration and exploitation
to one PB.
 There is no pre-determined limit as to the size of the PB as formed, nor to the length
of the period .
 All wood which are over matured, mature or nearly so, and are ready for regeneration
or in which regeneration has already appeared, may be included in the FPB.
 In an even aged forest, which is normal or nearly normal, the extent of wood requiring
inclusion in the FPB will be of correct proportion corresponding to the regeneration
time required.
 In abnormal forest, a very large proportion may require to be included in the FPB
because of the presence of large extent of over mature woods, and the presence of
advance growth over a large part of the forest. In such circumstances, the area of FPB
is limited on grounds of practical convenience.
 The gradual evolution of FPB system from the fixed PB system may be summed up as
follows;
i) Fixed, self- contained PBs with permanent boundaries.
ii) Fixed, scattered, PBs with permanent boundaries.
iii) PBs, scattered or self contained, with boundaries subjected to revision at intervals-
Revocable Allotment Method.
iv) Single PB, scattered or self- contained, with fixed period.
v) Floating PB, passing gradually, over the whole forest.
 Each step aimed at greater freedom and elasticity in selection of areas for regeneration
according to Silviculture requirements, without sacrificing the basic principles of
forest management.
 The FPB method is also called as Quartier Bleu Method. For calculating the annual
yield, Duchaufour devised a method particularly applicable to the Quartier Bleu
Method of regeneration. He applied the following formula;

Period of exploitation/ Rotation = area of Cpts. in FPB/ Area of F.S.
Alternatively, P/R= FPB/F.S.
So, P= R* FPB/FS

Advantage of the FPB method
i. This method closely relates felling to the Silvicultural requirements of each crop.
Only those crop which are in need of regeneration or in which regenerations felling
have already been started, are put in FPB.
ii. No artificial period, in the sense of the time limit for completion of regeneration, is
laid down in any area. The period found by calculation is for regulating the annual
yield, and has no bearing on the intensity or frequency of felling in any particular
crops; these will depend entirely on the progress of regeneration.

Disadvantage
i. It works satisfactorily only in those forests which have a more or less normal
distribution of age class.
ii. It is not suitable for irregular forest.

59 Lecture notes on Forest Management by Bishnu P Devkota, 2010

5.3 Regulating natural forest (uneven aged forest)
Uneven-aged Forest
 An uneven-aged stand is a stand where there are considerable differences in the age of
the trees present and where three or more age classes are represented (Society of
American Foresters, 1958 cited in Leschner, 1984)).
 There are three kinds of uneven-aged forests. The first is the “true” all-aged forest,
where all ages and all sizes of trees are found intermixed in the same stand. This is the
classical concept of an uneven-aged stand and is seldom found on the ground.
 The second kind of uneven-aged forest is one composed of small and irregular groups
of more or less even-aged trees. This is the most commonly found situation on the
ground.
 The last kind of forest is a mosaic of readily distinguishable even-aged stands spread
throughout the forest. All ages and sizes are present but the individual stands are
predominantly one age and one size (Davis, 1966 cited in Leschner, 1984).

Cutting cycle and Reserve growing stock
 A cutting cycle is the planned interval between major felling operations in the same
stand, and reserve growing stock is the growing stock in the forest that is reserved
(uncut) to produce the growth for future cuts.
 The concept of cutting cycle and reserve growing stock is presented in the following
figure.













 In fig., point b is the volume just before harvest, point a is the volume just after
harvest, distance c is the amount of harvest, distance d is the amount of reserve
growing stock and distance e is the cutting cycle.

Regulating the Uneven-aged Forest
 Concept of regulation of uneven-aged forest means thoughts and ideas how to
regulate or manage properly the uneven-aged forests, and practice means
implementation of such important thoughts and ideas to manage the uneven-aged
forest in a systematic and scientific way and on perpetual basis. Many attempts were
made in the past to manage such forests or to regulate the forest, some of which could
be successful for long-term basis.

60 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Decision needed while regulating uneven-aged forest (Davis and Johnson, 1986)
1. Cutting cycle- number of years between harvest entries on each acre.
2. Reserve growing stock level- residual volume or basal area per acre of the stand
immediately after harvest.
3. Stand structure- number of trees per acre by species and diameter that make up the reserve
growing stock.
4. Sustainability procedures-constraints established on harvesting and regeneration to ensure
maintenance of the stand structure and thus perpetuation of the harvest over all future
cutting cycles.
5. Other cultural treatment-release and fertilization.
6. Species for regeneration-species and genetic stock selected for each stand type in the
forest.
7. Site preparation and regeneration method. Combination of pre and post harvest treatments
scheduled to establish the desired species and control their early growth.

Strategies for uneven-aged forest regulation
 Given the existing forest and a conception of the fully regulated forest that we would
like to achieve, classical timber management scheduling addressed the questions of
how many hectares and how much volume to cut. Over the years of history forest, a
great many methods of for determining the cut were developed in various parts of
world.
 The yield can, broadly, be prescribed in three ways, viz. by area, by volume or by area
and volume combined. In case of yield by area, the entire area, irrespective of the
growing stock, forms the basis of calculation. In case of yield by volume, the volume
of growing stock, the increment or both volume of growing stock and its increment,
may form the basis.
 There are basically two models for regulating uneven-aged forest of which are
follows:

A. Conceptual Model for regulating uneven-aged forest
 The conceptual regulation model is a forest divided into a series of stands that are
regularly harvested on the cutting cycle. The stands all provide an equal volume for
harvest and thus may vary in size depending on site productivity. There are as many
stands as there are years in the cutting cycle, in the simplest case, so that, there may
be several stands, each harvested in the same year, but the sum of the volume
harvested from all stands in each year is the same.
 This model can be shown graphically as a series of overlapping cutting cycles. One
cutting cycle for each stand occurs each year and there is a continuous flow of wood
(Fig.2)

61 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Conceptual Model for regulating uneven-aged forest













 Maps of uneven-aged forests might look like those in fig. 3 on a 5-year cutting cycle.
Map ‘a’ shows five single stands, each of which is cut once every 5 years. Stands 3, 4
and 5 are lower on the slope, border of stream and are more productive. Therefore,
they occupy a smaller area than stands 1 and 2, which are near the ridge top and have
lower productivity. Map ‘b’ is a stylized view of multiple stands. Each cell represents
1 stand and there are 25 stands on the forests. Each is the same size, if we assume
there is equal productivity and 5 are cut every year. The numbers in the cell indicate
in which of the 5 years the harvest occurs.












 The hectares harvested annually are simply calculated if equal site productivity and
constant reserve growing stock are assumed.
 Annual hectares harvested = total ha. in forest /Years in cutting cycle

Limitations of Conceptual model
This conceptual model leaves four key questions about the regulated forest unanswered.
These are:
a) How much reserve growing stock should be carried?
b) What should the diameter distribution on the stand be?
c) What should the species composition of the stand be?
d) What should the cutting cycle length be?

a) Volume of Reserve Growing Stock

62 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 The amount of growth is highly, but not solely, dependent on the reserve growing
stock volume. This is demonstrated by the simple equation;
 Growth = growing stock × growth percent
 The growth percent is also a function of growing stock volume because, after a point,
the denser the stand, the slower the growth. Thus, beyond a certain point, the larger
growing stock, the smaller the growth percent. In any event, there is no widely used
simple formula to estimate the “proper” level for uneven-aged stands.

b) Diameter Distribution
 A basic premise of uneven-aged management is that the stand contains trees of all, or
many, age classes and sizes.
 The relationship would be a straight line from a purely optimal view (Fig. 4a).
However, many younger trees (those usually with the smaller diameters) do not
survive as result of either mortality or cutting.
 Thus, many smaller trees are needed in order to obtain larger ones in the future. These
results in the famous J-shaped curve (Fig. 4b) associated with Meyer (1953).
 The J-shaped curve is based on the work of a French forester named De Liocourt.
 He believed that the desirable diameter distribution in the stand could be described by
the relationship:


where
X = the number of trees in diameter class‘d’ during time period‘t’ and q= a constant;
0<q<1
 This relationship simply states that, in any time period, the number of trees in a
diameter class is some constant proportion of the number of trees in the next smaller
diameter class. It will result in the J-shaped curve when plotted on the pair of axes.












Figure 4: Diameter distributions in uneven-aged stand; a) desired and b) actual
In fact, Hann and Bare (1979) and others cited in their work suggest that the J-shaped
distribution should be questioned and that some other distribution might be better for a given
set of management objectives.

c) Species Composition
 The basic question in species composition is balancing the species that will reproduce
and grow well on the site with those that are desirable for reaching the management
objectives. 1
tdtdqXX

63 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 The site limitations help define a set of species from which individual species can be
chosen to fulfill management objectives.
 Species desirability can be affected by such things as marketability, the owner’s
aesthetic values, and production of food and shelter for wildlife. However, once again,
there is no simple formula or procedure to determine the most desirable species
composition.

d) Cutting cycle length
 There are also many factors affecting the cutting cycle length. The final choice is a
balance of these factors, as weighted by management objectives.
 Some of the more important factors are species composition, financial needs and site.
 The silvicultural characteristics of the particular species planted affect the length of
the cutting cycle in several ways.
 Fast growing species can have a shorter cycle and slow growing species a longer
cycle.
 The cutting cycle length affects the tree species and the diameter distribution.
 In general, shorter cutting cycles allow better biological control because diseased or
infested trees can be cut more often.

B. An Optimizing Model for regulating uneven-aged forest
 Adams and Ek (1975) developed this model that answers the most of the preceding
major questions in a quantitative manner for individual stands in an uneven-aged
forest.
 The model is based on individual tree stand growth and yield models.
 Individual tree growth and yield models start with a known stand structure, often a
map of trees in a stand, and ‘grow’ the trees from one diameter class to another until
the individual trees are cut or removed by mortality.
 Yield is estimated by ‘stopping’ the model at the desired time period and adding up
the volume in the trees still present.
 Growth is the difference between yields in two time periods. This model is also used
to solve the transition problem between unregulated and regulated stands.
 The Adams-Ek model uses an individual tree model, the solution of the program
produces a starting diameter distribution, stated as the number of trees in each
diameter class, which maximizes harvestable growth.
 Harvestable growth may be defined as either timber volume or timber value. Thus, the
major question of optimal diameter distribution is answered.
 The constraints in stocking level can be iteratively solved for several different
stocking level.
 The amount of the harvestable growth can then be noted for each of these different
stocking levels and the highest level chosen.
 The maximum harvestable growth calculated as a function of different stocking level,
defines the stocking level.
 The optimal stocking level is the one with the largest harvestable growth. Thus, the
major question of optimal stocking level is answered.
 The determination of an optimal cutting cycle length is slightly more complex but
follows the same basic scheme.
 The growth model can “grow” the stand year by year until the desired growth period,
which is equal to the cutting cycles, is reached.

64 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 However, the model can be stopped at any one of the intermediate years, for example
years 1, 2, 3 and 4 for a 5-year growth period, and the growth and yield estimated in
that year. This is done for all the years equal to and less than the number of years in
the cutting cycle.
 The calculations are iterated for the different stocking levels, in each of the years.
This results in a set of growths for different length cutting cycles and, within each of
these cutting cycle lengths, a growth figure for each of the different stocking levels.
 The maximum growth within any cycle length be chosen, thus defining optimal
stocking for that cycle length.
 The maximum growth between each cycle length is selected, thus defining both the
optimal stocking level and cycle length.
 This model is used to solve the transition problem between unregulated and regulated
stands.
Hann and Bare (1976) reviewed and suggest that five ‘problem areas’ exist that keep such
models from being fully operational. These problem areas are:
1) better computer and algorithm capacities,
2) interfacing stand simulators and nonlinear programs.
3) Better uneven-aged growth and yield simulators;
4) determining optimal species mix; and
5) scheduling cuts forest wide rather than in just a single stand.
Limitations
 The major question of species composition is still left unanswered.
 Time consuming during data computation.
 The possibility of an infeasible solution may exist.
The following formulae are mainly used for regulating uneven-aged forests (Ram
Prakash., 2001).
a) Yield based on growing stock only
1) Von Mantel’s Formula and its Modification


Where,
Y= Yield,
Vo= Volume of Growing stock >7*1/2 ft girth,
Vr= volume of remainder of the enumerated stock and
R= Rotation
2.French Method of 1883

Where,
Y= annual yield,
Vo= volume of old class,
Vm= Volume of medium class
t1= increment per unit per annum of old class,
t2= increment per unit per annum of medium class,
n= a factor varying according to circumstances and
r = Rotation.
 The method is elastic, all removal count towards yield.
 It can be adopted in irregular shelter wood system  
2
100 1
23/
tV
n
tV
r
V
Y
m






 R
V
R
V
Y
r


2/1
0

65 Lecture notes on Forest Management by Bishnu P Devkota, 2010

b) Yield based on increment only:
1) Increment Method
 It is based on the premise that the yield must be co-related with the increment
throughout the life of the crop.


Where,
Y= annual yield,
V= present volume,
Vn= volume ‘n’ years ago
a= volume removed during the previous ‘n’ years.
 This method is applicable to irregular forests of small extent where the entire growing
stock can be measured frequently, say every fifth or tenth year, and the crop condition
examined correctly.
2) The Swiss Method
 According to this method, only the annual increment is to be removed from the oldest
diameter classes as the yield.


Where,
X= volume of the diameter classes below the fixed diameter limit.
Y= volume of the diameter classes above the diameter limit and upto the limit upto which the
c.a.i. is considered satisfactory.
Z= volume of the diameter classes above the satisfactory diameter limit (i.e. surplus G.S.)
i = the c.a.i of various diameter classes.
c.c. = the period during which the volume of the oldest diameter classes should be removed,
or cutting cycle.

For the application of this method, essential requirements are
i. Stand and volume table
ii. Measurement of the growing stock and increment at short intervals of 5 to 10 years, in
the same manner
iii. Exact determination of the c.a.i.
iv. The composition of the diameter classes should be as near normal as possible
v. Any increase or decrease in the growing stock at each revision must be offset by
increasing or decreasing the yield for the next period.
 This method is applicable to selection forests of comparatively small extent where
frequent measurements are possible.
n
VaV
Y
n

 ZiYiXi
ZY
cc
cc
ZY
dAnnualyiel





.
.

66 Lecture notes on Forest Management by Bishnu P Devkota, 2010

3. Biolley’s Check Method:

Where,
Ya = annual yield; V2 = present G.S. volume; V1 = G.S. volume ‘n’ years ago; N = volume
of trees cut; and P = volume of recruitment in ‘n’ years.

c) Yield based on Growing Stock and Increment:

1. Hufnagl’s Diameter Class Method:


Where,
Ya= annual yield
n1, n2, n3 and n4 are the number of trees in the lowest to the highest dia. classes (in
ascending order);
a1, a2, a3 and a4 are the mean ages of trees in each dia. class;
and V1, V2, V3 and V4 are the volumes of average trees in each dia. Class (these may be
found from volume tables or otherwise).
5.4 Allowable cut methods
 The allowable cut is the amount of timber considered available for cutting during a
specified time period, usually one year.
 It is the amount of timber the forest manager would like to have cut and thus is a
target or guideline that the manager attempts to reach.
 However, there are many external reasons why the allowable cut is not reached in a
particular year
1. Fluctuations in forest products market
2. Cyclical weather conditions can effect annual cuts for several consecutive years.
Extremely wet cycles and dry cycles can effect the timber harvest.
3. Wood labour availability
 Allowable cut are generally developed for large geographical area and for long time
periods
 Allowable cut is a large area concept when calculated for working circles
5.4.1 Area control
 Area control requires cutting equal areas or equiproductive areas annually or
periodically
 For example, a 6000 ha forest on a 60-year rotation would have 100 ha annual cut
 Annual allowable cut =6000/60 = 100ha/yr
 Volume of annual allowable cut is estimated by looking up yield in the appropriate
table and multiplying by the number of hectares.
 Suppose, yield at 60 years is 45 cu.m/ha
 Thus, annual allowable volume = 100 ha x 45 = 4,500 cu.m.
 Thus, allowable cut (at 5-years) =100ha x 5 years
 Allowable volume cut =4,500 x 5 years =22,500 cu.m.   
n
PVNV
Y
a


12 














































1
12
21
2
23
32
3
34
43
4
34
4
V
aa
nn
V
aa
nn
V
aa
nn
V
aa
n
Y
a

67 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 Allowable cut estimation becomes more complex if the ha in the forest have different
productivity levels. This requires cutting of equal productivity rather than equal area
 Suppose, forest was a pure, natural unthinned stand of Shisam on a 30-year rotation.
Site indices (SI) were unequal and distributed as shown below

SI Ha (Ai) Cu.m/ha (Yi) Total yield (YiAi) Eq.ha
---- -------- ---------------- -------------- ----------
5 100 19.9 1990 1.389
4 250 23.4 5850 1.182
3 375 27.4 10275 1.009
2 225 32.3 7267 0.856
1 75 39.5 2963 0.700
------ ---------
1025 28,345
Unmodified area control requires cutting 34.17 ha (1025/30 =total area/rotation) each
year.
 However, this would result in unequal volumes each year
 For example, cutting in SI5 results in about 680 cu.m. annual cut (34.17 x 19.9)
whereas cutting in SI1 results in about 1350 cu. m. annual cut (34.17 x 39.5)
 The allowable cut can be modified for equal productivity by using mean yield and
calculating equivalent ha
 Mean yield per/ha



Yi= yield per ha in ith site class
Ai= no. of ha in ith site class



= 27.65 cu.m/ha
Equivalent ha
EAi (SI5) = 27.65/19.90 = ¯Y/Yi=1.389 ha
EAi (SI1) = 27.65/39.50 =0.70 ha
 Annual cut for SI5 = 34.17 x 1.389=47.46 ha
 Annual cut for SI1 = 34.17 x 0.7 =23.93 ha

In terms of volume cut, results will be the same
 SI5 = 47.46 ha x 19.9=944.45 cu.m
 SI1 = 23.93 x 39.5 = 945.24 cu.m
 Mean =34.17 x 27.65 = 944.80 cu.m
Advantages
 It is simple (uncomplicated).
 The area on the ground to be harvested is readily identified, “Harvest the oldest stand
first”.
 It can readily produce a regulated forest.
 It seems particularly well suited to even aged management, which is the most
prevalent form of forest management.
 It is widely applicable. 


Ai
AiYi
Y
)( 1025
28345
Y

68 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Disadvantages
 Unmodified area control can cause large fluctuations in the volume harvested.
 Area control must be combined with some type of volume control when applied to un-
even aged stands.
5.4.2 Volume control
 Volume control requires cutting equal volumes annually or periodically
 The allowable cut is determined by one of several formulas, and this volume is then
cut each year.

1. Hundeshagen’s formula

Where,
Ya = actual yield, or in this case, allowable cut
Ga= actual growing stock
Yr = yield in a fully stocked forest
Gr = growing stock in a fully stocked forest
 Hundeshagen’s formula is used to estimate allowable cut in the same manner in which
it was used to estimate yield.
 The ration Yr/Gr is formed from a yield table or yield function that is applicable to the
forest in question.
 The value for Yr is read directly from the yield table and the value for Gr may be
estimated by summation formula.
 The procedure for determining annual allowable cut is to estimate the total growing
stock on the forest or stand in question and then to simply multiply that estimate by
the ratio.
2. Von Mantel’s formula

Where,
Ya= actual yield or in this case , allowable cut
Ga = actual growing stock
R= rotation age
(Both these formulas do not consider growth)

3. Meyer’ Amortization formula


Where,
Vn= growing stock volume at future time n
V0= growing stock volume today (time zero)
It= compound growth percent on entire stand, including ingrowth
Im=compound growth percent on the cut portion of the stand
a=annual cut
n=number of years in the estimate period a
r
r
a
G
G
Y
Y R
G
Y
a
a
)(2
 m
n
mn
n
i
i
aiVV
1)1(
)1(
0



69 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 Basically it says future volume (Vn) is equal to current volume (V0) less the cut
 Allowable annual cut can be estimated by solving the above equation.


4. Austrian Formula
(Simplified version of Meyer’s formula)

Where ,
Ga = present growing stock
I = annual increment
Gr = Desired growing stock
a = adjustment period (cutting cycle)

5. Hanzlik formula
 Developed for old growth in the Douglas fir region

Where,
Vm= Volume of overmature timber
R=rotation age
I=annual growth averaged over rotation
5.4.3 Combined area and volume control
 A combination of area and volume control, with perhaps a bit more emphasis on area
control is often found in practice.
 Here the combined procedure in the light of even aged management is discussed,
although it is equally applicable to uneven aged management.
 The first step is obtaining inventory data. A series of cover type maps are used, often
developed from an overlay on aerial photos.
 Information recorded about each stand varies by organizational needs but certainly
would include species or species association, age class and level of stocking.
Estimates of volume or yield might also be included.
 Estimated site quality and silvicultural condition and treatment needs are also
included.
 In the second step, individual stands are arrayed in descending order with those to be
cut first at the top.
 The rotation age is estimated to define the age classes for data collection.
 First in the array may be over mature stands, and those with an over mature over
story needing release, this is followed by under stocked mature stands, fully stocked
mature stands. Finally, the immature stands may be simply aggregated because they
will be cut for many years.
 The array is rearranged in an age class distribution, stand by stand as in even aged
regulation.
 Variables to identify the stand such as its size in hectares, volume, probable yield are
kept readily accessible when making the array. 1Im)0.1(
)(
))1((
0


n
m
n
n i
ViVa a
GrGa
ICutAnnual

. I
R
V
CutAnnual
m
.

70 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 In the third step, some preliminary cut estimates are made. Unmodified area control
might be used as the first approximation because it will always lead to a fully
regulated forest. The first array in step 2 might be used to determine sequence of cut.
A proportionate hectare is made. Concurrently some type of volume control estimate
using the formula is made.
 This might be modified by other socio-economic factors as well.
 As a fourth step, an iterative adjustment process is followed.
Eg. Forest contains- 120000 hectares
60 year rotation
Under unmodified are control annual cut= 120000/60 ha
= 2000 ha
It may also have been determined that the annual cut is 5m3/ha or 10000 m3, as the
result of volume control calculations or in light of the procurement departments
assessment of open market wood availability.
 Fifth, the cut from the first 2000 ha of stands arrayed in step 2 is added to see how
close it comes to 5m3/ha (10000m3). It would probably be less than the desired
volume because of the over story and understockd stands. Therefore, some of the
mature, well stocked stand might be harvested to increase the cut. The procurement
department might also be asked to reassess their estimates or if they could open a new
procurement area to help alleviate the undercut.
 PNWs may also be calculated for each of the alternatives.
 An acceptable solution may be found on the first iteration. Conversely, several
additional iterations may be required to find an acceptable compromise between the
biological and financial requirements.
 The end result will be a cutting budget, which is a plan, specifying which stands will
be cut, when they will be cut, and how they will be cut.
 The cutting budget ties down the planned action to specific hectares on the ground;
which of many stands to be cut and when.
 The cutting budget is a guideline and is followed flexibly.
 The cutting budget will also explicitly or implicitly indicate how the stand is to be cut.
Eg. Clear cut or selection cut.
 The time period covered by the cutting budget is arbitrary, but is usually in 3 to 5
years increments.
 Changing technology and merchantability standards will change the yields from the
stands.

71 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Unit-6: Forest policy
National Forest Policies
 The development of national forest policies generally centers on needs and
requirements for the implementation of sustainable management.
 Nepal has recognized the need for sustainable forest management, and for forests to
contribute to national development and the benefit of local communities.
 Topical concerns in forest policy development include deforestation and forest
degradation, illegal logging, plantation development, devolution and decentralization
of forest management, and conservation.
 Nepal has incorporated its forest policy with national five year plan. The major
forestry priorities include managing and utilizing forest resources in a sustainable
manner to ensure a balance between the environment and socio-economic
development. In keeping with an overall goal of poverty reduction, the plan
encompasses the expanses of community and especially, lease hold forestry to
generate employment for the poor and disadvantaged, increasing private sector
involvement in forest management, and the adoption of improved land use practices.
 The policy specifies that forest and other wooded land cover should be maintained at
40 percent of national land area.
 Nepal has released a Revised Forestry Sector Policy in 2000, which emphasizes
management of forest of the Terai, Inner terai and Siwalik region of the country. The
policy provides more specific guidance on the general tenor of the five year plan, with
short, medium and long term objectives.

National Forestry Plan-1976
 The National Forestry Plan -1976 was the official document that recognized past
mistakes and emphasized the need to correct them. It admitted that the protection,
maintenance and development of forests scattered all over the country was neither
possible nor even practicable through government efforts alone. The report, thus,
called for involving the citizens of Nepal in all aspects of forest protection, production
and proper utilization, and also for recognizing the forest as inalienable property of
society.
 The plan for the first time, categorized forests according to ownership and level of
possible participation, into five types- government forest, panchyat forest, private
forest, leasehold forest and religious forest. It also emphasized for the scientific
management of forest for the best benefit of its people and the government
recognizing the involvement of people in forest management.

Master Plan for Forestry Sector, 1989
The Master Plan for the Forestry Sector (MPFS, 1989), prepared between 1986 and
1988 and approved in 1989 provides a 21-year policy and planning framework for the
forestry sector. The long-term objectives of the Master Plan for Forestry Sector
include the following:
 to meet the people's basic needs for forest products on a sustained basis
 to conserve ecosystems and genetic resources
 to protect land against degradation and other effects of ecological imbalance
 to contribute to local and national economic growth
The Master Plan for the Forestry Sector guide's forestry development within the
comprehensive framework of six primary and six supportive programs to achieve its
objectives.

72 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Primary Forestry Development Programmes of MPFS
1. Community and private forestry
2. National and leasehold forestry
3. Wood-based industries
4. Medicinal and aromatic plants
5. Soil conservation and watershed management
6. Conservation of ecosystems and genetic resource

Supportive Forestry Development Programmes of MPFS
1. Policy and legal reforms
2. Institutional reforms
3. Human resource development
4. Research and extension
5. Forest resources information system and management planning
6. Monitoring and evaluation
The main feature of the Master plan is an integrated and programme-oriented
approach. The idea to employ a program approach to support these six primary
program and six supportive programs was a turning point in Nepal’s history of
forestry sector policy.

Forestry Sector Legislation
 Forestry legislation used to be formulated to resolve past problems related to
protection rather than to meet present and future needs for better management and
increased production.
 As a result, legislation, which included several major acts and their associated rules,
was not in accordance with the spirit of the new forestry sector policy, which was
arrived at through the master planning process.
 This discrepancy was particularly noticeable in the case of community forestry. Policy
is now very oriented toward "people's participation" in contrast to previous legislation
such as the Forest Act of 1961, which originally aimed to prevent (the villagers) from
entering forests.

Other early forestry laws are identified below.
1. The Forest Protection Special Act of 1968 and the Forest Products (Sale and
Distribution) Rules of 1971 strictly regulated people's rights to forest products.
2. The Panchayat Forest Rules and the Panchayat Protected Rules of 1978 allowed
communities to manage barren or degraded lands for forest production. These rules
needed improvement before they could effectively promote community forestry in the
spirit of decentralisation.
3. The Leasehold Forest Rules of 1978 allowed only barren or very degraded areas to be
leased. In practice, this policy encouraged the cutting of trees so that a lease for the
area could be applied for.
4. The Private Forest Rules of 1984 entitled owners of private forests to a free supply of
planting materials and to technical assistance from the District Forest Offices
provided their forest was duly registered.
5. The National Parks and Wildlife Conservation Act of 1973 defines a national park and
provides for three other kinds of reserves: strict natural reserves for scientific studies
only, wildlife reserves (in effect similar to national parks), and hunting reserves.
Government of Nepal may, "if it so deems necessary," declare any area to be a part of

73 Lecture notes on Forest Management by Bishnu P Devkota, 2010

a park or reserve, and may take over the ownership of any area so declared. This act
and the rules made under it aim to protect wildlife and control hunting, but they have
not been successfully enforced. Thus, in 1994 an additional provision for the
establishment of conservation areas and buffer zones was made.
6. The National Parks and Wildlife Act was amended so that the revenues of a national
park would be shared with the local communities located within the buffer zone
surrounding that park.
7. The Soil and Watershed Conservation Act of 1982 allows HMGN to declare any area
as a protected watershed.
8. The Land (Survey and Measurement) Act of 1963 indirectly hinders forestry
development because forestland is defined as government land. In fact, its provisions
encourage people to cut down trees so that the piece of land on which they stand can
be unambiguously claimed as private.
9. The Pastureland Nationalisation Act of 1974, which is applied selectively, vests the
ownership of all pasture lands in HMGN. Local village and district committees are
required to "protect and improve" pasture lands and "must not use the land for any
other purpose".
10. Among the public utilities laws that affect forestry include the Public Roads Act of
1974, which deals with the acquisition of land for the protection of roads; the
Irrigation; Electricity and Water Resources Act of 1967; the Electricity Rules of 1969;
and the Canal Management Rules of 1974.

The preceding policies are now being implemented under the Forest Act of 1993 and
the Forest Rules of 1995. The act and its regulation are a result of past experiences
which demonstrated that people's participation is necessary for the management of
forests. The act and rules, however, does require periodic revision as the
implementation of forestry resource management proceeds. The Forest Act of 1993
and the Forest Rules of 1995 aim to develop the forestry sector through
decentralisation and the participation of individuals and groups.

Forestry Sector Policy, 2000
The Forestry Sector Policy, 2000, is an updated version of the Forestry Master Plan Policy
and subsequent amendments to that document. It should inspire the revision of the documents
of the Master Plan for the Forestry Sector as well. The policy of 2000 contains development
imperatives, outlines, strategies, and programmes, and summarises the investment required to
develop the forestry sector. The policy will be instrumental in helping the government to
prepare plans and programmes, to formulate legislation and to develop a mechanism that
fosters co-operation with donor agencies. In sum, issuance of this policy will ensure that the
forestry sector plays a vital role in the overall progress and well-being of Nepal and her
people.

Objectives of forestry sector policy, 2000
Long-term Objectives
 To meet the people's basic needs for fuelwood, timber, fodder, and other forestry
products on a sustained basis
 To contribute to food production through effective interaction between forestry and
farming practices.
 To protect land from degradation by soil erosion, floods, landslides, desertification,
and other ecological disturbances.

74 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 To both conserve and use in a sustainable way biological diversity and genetic
resources for the maintenance of prevailing ecosystems.
 To contribute to the growth of local and national economies and thereby to improve
the quality of life of the people by managing land and forest resources, developing
forest-based industries, and by creating opportunities for income generation and
employment.
Medium-term Objectives
 To promote people's participation in land and forestry resource development,
management, and conservation.
 To improve the legal framework needed to enhance the contribution of individuals,
communities, and other organisations to land and forestry resource development,
management, and conservation.
 To improve and strengthen the organisational framework and the institutions of the
forestry sector so that they can better perform their missions.
Short term objectives
 To provide increased opportunities to the people for forestry resource management
under the community, private and leasehold forestry programs as well as the
biodiversity conservation program provided for in the new forestry legislation.
 To manage the natural forests of the Terai and Inner Terai more effectively in order to
contribute towards the socio-economic development of the country.
 To continue to strengthen institutions and legislation, including the development of
clear operational guidelines for those entrusted with administering forestry sector
legislation in line with the program approach in the forestry sector.
6.1 Policy formulation process
6.1.1 Local
 District forest office identifies the need for formulation of local level forest policy.
 Under the respective District Assembly, Natural Resource Management Committee
exists where DFO is the Member Secretary. As per the request of District Forest
Office or identifying the need by itself, a policy drafting committee is formed by
Natural Resource Management Committee.
 The drafting committee organizes stakeholder’s consultation meetings/workshop
inviting concerned organization, line agencies and experts.
 The drafting committee prepares the draft policy.
 The draft is submitted to Natural Resource Management Committee; the committee
reviews the draft and presents it in the District Assembly.
 The District Assemble may approve the policy as it is or ask for revision or may
review itself.
 The approved policy is implemented by district forest office/district development
committee office.
 The local policy should not contradict with the national policy.
6.1.2 National
 Constitutional regulations providing TOR to MFSC
 The formation of a technical committee by the departments or ministry to draft a
forest policy
 Inter-agency workshops to review the draft policy prepared by the technical
committee

75 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 Depending on the magnitude of policy, a multi-stakeholder national workshop to
review the draft policy
 Preparation of the final draft by the technical committee. The policy so prepared
should not contradict with the international policy/conventions signed by Nepal
Government.
 Submission of the final draft to the Ministry of Forest and Soil
Conservation/Department of Forest
 Soliciting the views of other ministries or agencies on inter-sectoral linkages
 A final document to be submitted to the cabinet for approval. The cabinet may ask
for revision or approve as it is.
 Promulgation of the policy by the cabinet


Existing Policy Framework
 NFP (1976) and MPFS (1988-2010) provided conservation orientation and a human
face to forestry
 Legitimized by the “Forest Act 1993” and “ Forest Rules 1995”
 Revised National Forest Policy, 2000.

Challenges
 Both successes and gaps
 Successes in CF and PAS
 Ever increased threats of deforestation and degradation.
− Encroachment and conversion
− Illegal extraction and smuggling
− Poaching
− Forest fire
− Uncontrolled grazing
 Commitment to maintain 40% forest
 Challenges and issues on
− Inclusive policy making
− Technical capacities
− Gender and social inclusion
− Choices of forest governance modalities
− Numerous local, national and international initiatives
Opportunities
 Various forest management modalities (community based)
 Varied stakeholders
 Multi-stakeholder process from community to policy levels.
 PAS
 Integrated watershed management models
 Landscape approach to forest and biodiversity conservation.
 Valuable forest resources
 Community organizations
 Green enterprises: employment and income
 Payment of environmental services
 REDD

76 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Need of Policy Revision
 Facing challenges and opportunities within and outside the sector
 Witnessing substantial political, economic and social transformations
 World wide trend on decentralization
 Political system been replaced twice
 A number of new policies and priorities embodied in the periodic plans
 Significant changes in social composition, population pattern, infrastructure
development, attitudes, aspirations and needs

Current and emerging issues, trends and critical problems
 Forest and Biodiversity loss
 Invasive and exotic species
 Redefinition of rights, roles and responsibilities
 Competing forest uses
 Law enforcement
 Policy formulation
 Trees outside forests
 Lack of awareness and national commitment
 Institutional status quo
 Public-private partnerships:
 Environmental emergencies

77 Lecture notes on Forest Management by Bishnu P Devkota, 2010

Unit-7: Forest resource management plan

7.1 Forest resource management plan
7.1.1 Concept, definitions, objectives and limitations for forest management plan
Definition
 A working/management plan is a written scheme of management aiming at continuity
of policy and action and controlling the treatment of a forest. It is an instrument of
forest management.
 A working plan document is a means of enforcing systematic, obligatory and
mandatory regulations for continuous management of a given forest property. It is not
confined to silvicultural and management aspects of the forest only, but it also covers
other activities such as general administration, grazing and watershed management,
permanent improvement, preservation of environment, forest production, soil and
water conservation, wildlife and recreation etc. It is a complete plan for the next
working plan period (Ram Prakash, 1986).
 A management plan is usually a written statement of how the landowner hopes to
manipulate the forest to obtain objectives (Leuschner 1984).

Objectives
The objectives of any forest management plan differ widely according to the nature of
the forests and the local conditions. However some of the common objectives may
include;
 Creation of an ideal condition of the forest which meets the aims of the owner (in case
of private forest) or maximum benefit to the greatest number of people for all times
(public forest).
 Allow marshalling of the capital, men and materials needed to implement the plans at
the right place and time.
 Provide continuity for the management.
 Critical analysis of the problems
 Standard for the comparison

Goals
The goals of forest management plan can be identified as ecological or socio
economic in nature (USDA, 2004). However they may differ according to the place
and time.

Ecological goals
 Mitigate the impacts of forestry practices on biological diversity, wildlife, water
quality and quantity, forest soil and hydrological cycles.
 Maintain an acceptable range of native commercial tree species and their genetic
diversity on the forest area.
 Reduce the risk of significant loss of productive forest from insect and disease.
 Maintain and enhance site productivity.
 Protect sensitive sites.
 Manage the forest on sound scientific principles.
 Maintain or increase the forest productive landbase.

78 Lecture notes on Forest Management by Bishnu P Devkota, 2010


Socio-economic goals
 Reduce significant loss of forest product from fire, disease/insect and illegal
harvesting.
 Actively participate in forest policy decision making.
 Contribute to the economic stability of local community and the country.

Guiding principles of forest management plan
 The plan should be based on sustainable forest management.
 Open and consultative process in detail planning.
 Should be based on sound scientific forest management principles.
 Adaptive and multiple uses.
 Landscape level management.

Limitations of Management plan
Caused by change- Changes in internal, external and physical factors make plan outdated.
Accuracy- Sometimes variables are simply immeasurable, funds & time constraint.
Organizational inflexibilities- Organization for which plan is made may be inflexible.
Other organizational inflexibilities: policies, financial limitations.
External inflexibilities- political climate, labor availability, rate of technology change and
unforeseen market conditions.
Planning require a good deal of skilled labor, time and money

Forest management plan in Nepal
During the last sixty years, the experiences of forest management in Nepal have gone through
several phases. The initial phase can be considered as management of forest near the villages
by local people to meet households’ needs for fuel wood, construction timber, fodder and
other forest products. The people could generally obtain enough forest products for their
needs. In 1951 and the years that immediately followed major political, social and economic
changes were affected. One move was the nationalization of the forest in 1957. After
nationalization, it was not possible for the government to protect and manage the forest of the
kingdom, because Nepal was lack of infrastructures such as communication system, technical
system, and technical expertise or in other related resources.
The National Forestry Plan (NFP) of 1976 marks the beginning of the scientific practice for
the management of forest in Teri and the hills. The plan reflects that there was growing
awareness of the dreadful state of the forest, and of concern to develop and manage the forest
for the needs of citizenry. The NFP, 1976 recognized the critical forestry situation and laid
down as objectives for forest management, the restoration of the balance of nature, economic
mobilization, development of technology and promotion of pubic cooperation.
The NFP 1976 recommended for the preparation of forest working /management plan (FWP)
for each divisional forest office. FWPs were formulated for a few division of the Terai and
Dang forest division in Siwaliks. However, except for the implementation of the timber stand
improvement and other cultural operations, the management plan was generally not enforced.
The NFP 1976, although was a maiden effort for the scientific management of forest, but it
was only partly implemented and could not fulfill the objectives specified in the plans.
In 1984, after decentralization, all the district offices were directed to prepare District Forest
Schemes (DFS). Consequently all the forest offices in 1988 formulated DFS for the five

79 Lecture notes on Forest Management by Bishnu P Devkota, 2010

fiscal years. Several working schemes of various districts were approved by HMG. Similarly
specific action plans for Siraha, Saptari and Udaypur districts were approved and brought into
implementation. Still due to lack of resources, organizational problem, physiographic
situation of the country, the plan specified in the forest working schemes could not be
implemented effectively.
Now the government has adopted new planning method (i.e. Operational Forest Management
Plan especially for 19 Terai districts) to increase production of the forestry products in a
sustainable, economic and ecologically balanced way through the development and
implementation of participatory and technical approaches.

Types of management plan in Nepal
In Nepal, there are several types of management plan in forestry sector
1. Master Plan for Forestry Sector
2. District Forest Management Plan
3. Operational Forest Management Plan
4. Operational Plan of Community Forestry User group
5. Management Plan for National Park
6. Buffer Zone Community Forestry Operational Plan
7. Working Plan of Community Development Plan
8. Leasehold Forest Management Plan
9. Religious Forest Management Plan
10. Protected Forest Management Plan
7.1.2 Components of forest management plan
It is impossible to describe a uniquely correct management plan format, however it is
possible to identify components found in many management plans.
1. Management objectives and policies
2. Forest description
 Forest organization and subdivision
 Forest inventory data
 Growth and yield functions
 Maps
 Subdivisions and compartments
 Roads
 Cover types
 Narrative description
 Physiography
 Soils
 Cover types
3. Economic expectations
 Demand
 Timber products
 Recreation
 Hunting and fishing
 Water
 Other
 Supply
 Labour

80 Lecture notes on Forest Management by Bishnu P Devkota, 2010

 Capital
 Materials
3. Other external factors
 Legal restrictions
 Public policy
4. Analysis and synthesis
 Silvicultural analysis
 Regulation analysis
 Cutting budget
 Multiple use analysis and plan
5. Protection
 Fire
 Disease
 Insect

7.1.3 Forest management unit
 There are different view regarding the unit of forest management; whether the unit
should be a single forest or a group of forests which can be worked together.
 In Europe a single forest is a working unit.
 In India, groups of forest under one working circle form the unit of forest
management.
 In Nepal, a group of forests under one district form the management unit.

7.2 Preparation of forest management plan
7.2.1 Data Collection
Both biophysical and socio-economic data should be collected.
Biophysical data includes
i. Growing stock
ii. Area statistics
iii. Forest types and composition
iv. Compartment information
v. Site class distribution
vi. Regeneration status
vii. Climate
viii. Wildlife
ix. Non-timber forest products

Socio-economic data includes
i. Demographic and socio-economic situation
ii. Demand of forest products
iii. Participation and involvement of local people
iv. Possible socio-economic impacts

81 Lecture notes on Forest Management by Bishnu P Devkota, 2010

7.2.2 Maps and sketches
1. Management maps: 1:50000 scale. Show new working circles, feling series, P.B. and
other details of management
2. Stock maps: 1:15000 scale. Show distribution of forest types, main forest species,
non-forest areas, blanks
3. Regeneration survey maps: 1:4000-5000 scale. Used for regeneration
4. Working plan map: 1:50000 scale (1:6000-30000). Show physiographic features,
territorial boundaries, blocks, compartments, roads
5. Enumeration map: 1:50000scale. Show location of plots, strips, topographic units and
compartments

7.2.3 General format
1. Background
2. Objectives
3. Methodology
4. General description
4.1 Location and Boundaries
4.2 Land use
4.3 Topography
4.4 Geology and soil
4.5 Drainage
4.6 Climate
4.7 Historical background of forest management
4.8 Illegal felling
4.9 Forest encroachment
4.10 Non-timber forest products
4.11 Wildlife
4.12 Soil and wildlife conservation
4.13 Institutional framework and infrastructure
5. Socio-economic concerns
5.1 Demographic and socio-economic situation
5.2 Demand of forest products
5.3 Participation and involvement of local people
5.4 Possible socio-economic impacts
5.5 Mitigation measures
6. Present status of the forests
6.1 Area statistics
6.2 Forest types and composition
6.3 Compartment information
6.4 Site class distribution
6.5 Development class distribution
6.6 Regeneration status
6.7 Growing stock by development classes
6.8 Working circles
6.8.1 Production forest
6.8.2 Potential community/leasehold forest
6.8.3 Protection forest
7. Management strategy

82 Lecture notes on Forest Management by Bishnu P Devkota, 2010

8. Management proposals
8.1 Background
8.1.1 Growth of sal
8.1.2 Rotation age
8.1.3 Conversion period
8.1.4 Existing regeneration
8.2 Treatment prescriptions/Harvesting operations
8.2.1 Production forest, stand-wise management
8.2.2 Production forest, tree-wise management
8.2.3 Allowable cut assessment
8.3 Treatment prescriptions: Silvicultural operations
8.4 Preliminary prescriptions
8.4.1 Potential community/leasehold forests
8.4.2 Protection forests
8.4.3 Minor forest products
8.4.4 Soil and water conservation
8.4.5 Wildlife conservation
9. Marketing and supply aspects
10. Investment and physical support
11. Implementation, updating and monitoring
12. Environmental impact assessment
References
7.2.4 Contents
7.2.5 Write up of management plan
For the purpose of managing government managed forest, the Department of forest
must prepare a forest operational plan for one or more districts according to
topography and natural boundaries mentioning;
a. All areas covered by forest shrubs, bushes, and grass as well as uncultivated areas
b. Location of forest boundary
c. A forest map prepared in such a way as to clearly show the details of land use and
species of the trees.
d. Population and diversity of population and particular rotating to the use of forest
products
e. Particular relating to forest products
f. Programs and techniques of developing and protecting forest
g. Annual particulars relating to all collection, use and sale of forest products.
h. Forest products needed by local people.
i. Estimates of annual revenues form forest products during the entire period of the
operational plan.
j. Particular of manpower and expenses needed to implement the plan.
k. Programs relating to soil conservation, tourism development, conservation of
environment and historical heritage.
l. Other particulars deemed appropriate for the mgt. forest.
m. All such operation plan has been approved before the commencement of these rules
shall deemed to have been prepared under these rules.

83 Lecture notes on Forest Management by Bishnu P Devkota, 2010

n. The director must monitor, and evaluate the implementation of the operational plan of
the government-managed forest within these areas and submit a report to the ministry.
He must also send off the report to the department for the information.

Preparation of Management Plan (An example from Jhapa district)
1. Preliminary land allocation: To identify forests suitable for Govt. production
forests, potential community/leasehold forests and protection forests. District level
forest inventory data, forest maps, aerial photographs and topographic maps used as a
supportive material
2. Photo-interpretation: Aerial photo of scale 1:25000 used for photo
interpretation.Interpretation works for the provisional delineation for forest
compartments on aerial photographs were carried out based on criteria such as natural
boundaries (agricultural land rivers, aspect, slope, ridges, roads and accessibility),
working circle, development class, production status, species composition, stand
density, canopy cover, soil type, management objectives and harvesting viewpoints.
3. Forest resources inventory: Forest inventory done based on compartment wise
systematic sampling. In each compartment, plots distributed systematically to cover
entire compartment
4. Socio-economic survey: Available secondary data gathered from central as well
field offices and all primary data collected from field. RRA/PRA tools used
5. Preparation of forest management maps: Based on latest topographic map
(19860, a digitized forest map (scale 1:120000) of the district prepared. Forest ares,
grasslands, shrublands were directly digitized from the aerial photographs (1:25000)
and all existing community forests, community plantation areas roughly digitized
from the district map(1:125000). An operational forest management map (1:25000) of
the district showing areas (forest compartments, sub-compartments) also prepared
7.2.6 Methods of updating
 The management plan has to be revised once the purposed time expires.
 During the revision, the basic information regarding the area may not have to be
updated since there won’t be many changes in that.
 The socio economic data has to be updated.
 The future management activities should also be updated with the changing context of
the forest.
 For updating the plan, a technical team is formed, open discussion made with all the
stakeholders and changes are made according to the line with existing forest policy of
the country.



Good Luck!
Tags