Formal Logic - Lesson 5 - Logical Equivalence

fvsandoval 2,008 views 37 slides Apr 13, 2020
Slide 1
Slide 1 of 37
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37

About This Presentation

Formal Logic - Logical Equivalence Presentation


Slide Content

z
FORMAL LOGIC
Discrete Structures I
FOR-IAN V. SANDOVAL

z
Lesson 5
LOGICAL EQUIVALENCE

z
LEARNING OBJECTIVES
❑Determine if the logical expression is logically equivalent

z
LOGICAL EQUIVALENT
❑Twostatementsaresaidtobelogicallyequivalent(or
equivalent)iftheyhavethesametruthvalueforeveryrow
ofthetruthtable,thatisifx↔yisatautology.
❑Symbolically,x≡y.
❑i.e.
❑Showthatp^(qvr)and(p^q)v(p^r)areequal.

z
LOGICAL EQUIVALENT
p q rq v rp ^ (q v r ) p ^ qp ^ r (p ^ q) v (p ^ r )
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF

z
LOGICAL EQUIVALENT
p q rq v rp ^ (q v r ) p ^ qp ^ r (p ^ q) v (p ^ r )
TTTT
TTFT
TFTT
TFFF
FTTT
FTFT
FFTT
FFFF

z
LOGICAL EQUIVALENT
p q rq v rp ^ (q v r ) p ^ qp ^ r (p ^ q) v (p ^ r )
TTTT T
TTFT T
TFTT T
TFFF F
FTTT F
FTFT F
FFTT F
FFFF F

z
LOGICAL EQUIVALENT
p q rq v rp ^ (q v r ) p ^ qp ^ r (p ^ q) v (p ^ r )
TTTT T T
TTFT T T
TFTT T F
TFFF F F
FTTT F F
FTFT F F
FFTT F F
FFFF F F

z
LOGICAL EQUIVALENT
p q rq v rp ^ (q v r ) p ^ qp ^ r (p ^ q) v (p ^ r )
TTTT T T T
TTFT T T F
TFTT T F T
TFFF F F F
FTTT F F F
FTFT F F F
FFTT F F F
FFFF F F F

z
LOGICAL EQUIVALENT
p q rq v rp ^ (q v r ) p ^ qp ^ r (p ^ q) v (p ^ r )
TTTT T T T T
TTFT T T F T
TFTT T F T T
TFFF F F F F
FTTT F F F F
FTFT F F F F
FFTT F F F F
FFFF F F F F

z
LOGICAL EQUIVALENT
❑EnrichmentExercise
Determinewhetherthefollowingcompound
statementsarelogicallyequivalentusingtruthtables.
1.p→qand~q→~p
2.p↔qand(p→q)^(q→p)

z
LOGICAL EQUIVALENT
1.p→qand~q→~p
p q p →q ~q ~p ~q →~p
T T T
T F F
F T T
F F T

z
LOGICAL EQUIVALENT
1.p→qand~q→~p
p q p →q ~q ~p ~q →~p
T T T F
T F F T
F T T F
F F T T

z
LOGICAL EQUIVALENT
1.p→qand~q→~p
p q p →q ~q ~p ~q →~p
T T T F F
T F F T F
F T T F T
F F T T T

z
LOGICAL EQUIVALENT
1.p→qand~q→~p
p q p →q ~q ~p ~q →~p
T T T F F T
T F F T F F
F T T F T T
F F T T T T

z
LOGICAL EQUIVALENT
2.p↔qand(p→q)^(q→p)
p q p ↔ q p →q q →p (p →q) ^ (q →p)
T T T
T F F
F T F
F F T

z
LOGICAL EQUIVALENT
2.p↔qand(p→q)^(q→p)
p q p ↔ q p →q q →p (p →q) ^ (q →p)
T T T T
T F F F
F T F T
F F T T

z
LOGICAL EQUIVALENT
2.p↔qand(p→q)^(q→p)
p q p ↔ q p →q q →p (p →q) ^ (q →p)
T T T T T
T F F F T
F T F T F
F F T T T

z
LOGICAL EQUIVALENT
2.p↔qand(p→q)^(q→p)
p q p ↔ q p →q q →p (p →q) ^ (q →p)
T T T T T T
T F F F T F
F T F T F F
F F T T T T

z
LAWS OF LOGICAL EQUIVALENCE
❑Letp,q,andrstandsforanystatements.
❑LetTindicatestautologyandFindicatescontradiction.
Laws Logical Equivalence
Commutative
p ^ q ≡q ^ p
p v q ≡q v p
Associative
p ^ (q ^ r) ≡(p ^ q) ^ r
p v (q v r) ≡(p v q) v r
Distributive
p ^ (q v r) ≡(p ^ q) v (p ^ r)
p v (q ^ r) ≡(p v q) ^ (p v r)
Identity
p ^ T≡p
p v F≡p
Inverse
p ^ ~p ≡F
p v ~p ≡T

z
LAWS OF LOGICAL EQUIVALENCE
❑Letp,q,andrstandsforanystatements.
❑LetTindicatestautologyandFindicatescontradiction.
Laws Logical Equivalence
Double Negation
~(~p) ≡p
Idempotent
p ^ p ≡p
p v p ≡p
De Morgan’s
~(p ^ q) ≡~p v ~q
~(p v q) ≡~p ^ ~q
Universal Bound
p ^ F≡F
p v T≡T
Absorption
p ^ (p v q) ≡p
p v (p ^ q) ≡p

z
LAWS OF LOGICAL EQUIVALENCE
❑Additionallogicalequivalencesareasfollows.
Laws Logical Equivalence
Exportation Law
(p ^ q) →r ≡p →(q →r)
Contrapositive
p →q ≡~q →~p
ReductoAd Absurdum
p →q ≡(p ^ ~q) →F
Equivalence
p ↔q ≡(p →q) ^ ( q →p)
p ↔q ≡(~p v q) ^ ( p v ~q)
Implication
p →q ≡~p v q

z
LOGICAL EQUIVALENT EXAMPLE
❑Simplifythefollowingcompoundstatementsusingthelaws
ofequivalence.
1.[pv(~p^q)]v(pv~q)
2.[qv(~p^q)v(pv~q)]^~q

z
LOGICAL EQUIVALENT EXAMPLE
1.[pv(~p^q)]v(pv~q)
[pv(~p^q)]v(pv~q)≡[pv(~p^q)]v(pv~q)≡[(pv~p)^(pvq)]v(pv~q)
DistributiveLaw
[pv(~p^q)]v(pv~q)≡[(pv~p)^(pvq)]v(pv~q)
DistributiveLaw
[pv(~p^q)]v(pv~q)≡[T^(pvq)]v(pv~q)
InverseLaw
[pv(~p^q)]v(pv~q)≡(pvq)v(pv~q)
IdentityLaw
[pv(~p^q)]v(pv~q)≡(pvq)v(pv~q)
IdentityLaw
[pv(~p^q)]v(pv~q)≡pv(qv~q)
DistributiveLaw
[pv(~p^q)]v(pv~q)≡pv(qv~q)
DistributiveLaw
[pv(~p^q)]v(pv~q)≡pvT
InverseLaw
[pv(~p^q)]v(pv~q)≡T
UniversalBoundLaw

z
LOGICAL EQUIVALENT EXAMPLE
2.[qv(pv~q)v(~pv~q)]^~q
[qv(pv~q)v(~pv~q)]^~q≡[qv(pv~q)v(~pv~q)]^~q≡[qv(~qvp)v(~pv~q)]^~q
CommutativeLaw
[qv(pv~q)v(~pv~q)]^~q≡[qv(~qvp)v(~pv~q)]^~q
CommutativeLaw
[qv(pv~q)v(~pv~q)]^~q≡[(qv~q)vpv(~pv~q)]^~q
AssociativeLaw
[qv(pv~q)v(~pv~q)]^~q≡[(qv~q)vpv(~pv~q)]^~q
AssociativeLaw
[qv(pv~q)v(~pv~q)]^~q≡[Tvpv(~pv~q)]^~q
InverseLaw
[qv(pv~q)v(~pv~q)]^~q≡[Tvpv(~pv~q)]^~q
InverseLaw
[qv(pv~q)v(~pv~q)]^~q≡[(Tvp)v(~pv~q)]^~q
AssociativeLaw
[qv(pv~q)v(~pv~q)]^~q≡[(pvT)v(~pv~q)]^~q
CommutativeLaw

z
LOGICAL EQUIVALENT EXAMPLE
2.[qv(pv~q)v(~pv~q)]^~q
[qv(pv~q)v(~pv~q)]^~q≡[Tv(~pv~q)]^~q
UniversalBoundLaw
[qv(pv~q)v(~pv~q)]^~q≡[Tv(~pv~q)]^~q
[qv(pv~q)v(~pv~q)]^~q≡[(~pv~q)vT]^~q
CommutativeLaw
[qv(pv~q)v(~pv~q)]^~q≡T^~q
UniversalBoundLaw
[qv(pv~q)v(~pv~q)]^~q≡T^~q
UniversalBoundLaw
[qv(pv~q)v(~pv~q)]^~q≡~q^T
CommutativeLaw
[qv(pv~q)v(~pv~q)]^~q≡~q
IdentityLaw

z
LOGICAL EQUIVALENT EXAMPLE
2.[qv(pv~q)v(~pv~q)]^~q
[qv(pv~q)v(~pv~q)]^~q≡[qv(~qvp)v(~pv~q)]^~q
CommutativeLaw
[qv(pv~q)v(~pv~q)]^~q≡[(qv~q)vp)v(~pv~q)]^~q
AssociativeLaw
[qv(pv~q)v(~pv~q)]^~q≡[(qv~q)vp)v(~pv~q)]^~q
InverseLaw
[qv(pv~q)v(~pv~q)]^~q≡[(Tvp)v(~pv~q)]^~q
AssociativeLaw
[qv(pv~q)v(~pv~q)]^~q≡[Tvpv(~pv~q)]^~q
InverseLaw

z
LOGICAL EQUIVALENT EXAMPLE
2.[qv(pv~q)v(~pv~q)]^~q
[qv(pv~q)v(~pv~q)]^~q≡[Tv(~pv~q)]^~q
UniversalBoundLaw
[qv(pv~q)v(~pv~q)]^~q≡~q
IdentityLaw
[qv(pv~q)v(~pv~q)]^~q≡[Tv(~pv~q)]^~q
UniversalBoundLaw
[qv(pv~q)v(~pv~q)]^~q≡T^~q
UniversalBoundLaw

z
Group Enrichment Exercises
❑Simplifythefollowingcompoundstatementsusingthelaws
ofequivalence.
1.[(p^r)v(q^r)]v~q
2.[pv(~pvq)v(pv~q)]^~q
3.~(p→q)^(p↔q)

z
Group Enrichment Exercises
1.[(p^r)v(q^r)]v~q
[(p^r)v(q^r)]v~q≡
[(p^r)v(q^r)]v~q≡[(pvq)v~q]^(rv~q)
DistributiveLaw
[(p^r)v(q^r)]v~q≡[(pv(qv~q)]^(rv~q)
AssociativeLaw
[(p^r)v(q^r)]v~q≡[(pvq)^r]v~q
DistributiveLaw
[(p^r)v(q^r)]v~q≡[(pvq)^r]v~q
DistributiveLaw
[(p^r)v(q^r)]v~q≡[(pvq)v~q]^(rv~q)
DistributiveLaw
[(p^r)v(q^r)]v~q≡[(pv(qv~q)]^(rv~q)
AssociativeLaw
[(p^r)v(q^r)]v~q≡[(pvT)]^(rv~q)
InverseLaw
[(p^r)v(q^r)]v~q≡[(pvT)]^(rv~q)
InverseLaw
[(p^r)v(q^r)]v~q≡T^(rv~q)
UniversalBoundLaw
[(p^r)v(q^r)]v~q≡rv~q
IdentityLaw
[(p^r)v(q^r)]v~q≡rv~q
IdentityLaw

z
Group Enrichment Exercises
1.[(p^r)v(q^r)]v~q
[(p^r)v(q^r)]v~q≡~qvr
CommutativeLaw

z
Group Enrichment Exercises
2.[pv(~pvq)v(pv~q)]^~q
[pv(~pvq)v(pv~q)]^~q≡[pv(~pvq)v(pv~q)]^~q≡[pv(~pvq)v(pv~q)]^~q≡[(pv~p)vqv(pv~q)]^~q
AssociativeLaw
[pv(~pvq)v(pv~q)]^~q≡[(pv~p)vqv(pv~q)]^~q
AssociativeLaw
[pv(~pvq)v(pv~q)]^~q≡[Tvqv(pv~q)]^~q
InverseLaw
[pv(~pvq)v(pv~q)]^~q≡[Tvqv(pv~q)]^~q
InverseLaw
[pv(~pvq)v(pv~q)]^~q≡[(Tvq)v(pv~q)]^~q
AssociativeLaw
[pv(~pvq)v(pv~q)]^~q≡[(qvT)v(pv~q)]^~q
CommutativeLaw
[pv(~pvq)v(pv~q)]^~q≡[Tv(pv~q)]^~q
UniversalBoundLaw
[pv(~pvq)v(pv~q)]^~q≡[Tv(pv~q)]^~q
UniversalBoundLaw
[pv(~pvq)v(pv~q)]^~q≡[(pv~q)vT]^~q
CommutativeLaw
[pv(~pvq)v(pv~q)]^~q≡T^~q
UniversalBoundLaw

z
Group Enrichment Exercises
2.[pv(~pvq)v(pv~q)]^~q
[pv(~pvq)v(pv~q)]^~q≡~q
IdentityLaw

z
Group Enrichment Exercises
3.~(p→q)^(p↔q)
~(p→q)^(p↔q)≡~(p→q)^(p↔q)≡~(p→q)^(p↔q)≡~(~pvq)^(p↔q)
ImplicationLaw
~(p→q)^(p↔q)≡~(~pvq)^(p↔q)
ImplicationLaw
~(p→q)^(p↔q)≡[~(~p)^~q)]^(p↔q)
DeMorgan’sLaw
~(p→q)^(p↔q)≡[~(~p)^~q)]^(p↔q)
DeMorgan’sLaw
~(p→q)^(p↔q)≡(p^~q)^(p↔q)
DoubleNegationLaw
~(p→q)^(p↔q)≡(p^~q)^(p↔q)
DoubleNegationLaw
~(p→q)^(p↔q)≡(p^~q)^[(~pvq)^(pv~q)]
EquivalenceLaw
~(p→q)^(p↔q)≡(p^~q)^(pv~q)^(~pvq)
CommutativeLaw
~(p→q)^(p↔q)≡(p^~q)^(pv~q)^(~pvq)
CommutativeLaw
~(p→q)^(p↔q)≡[(p^~q)^(pv~q)]^(~pvq)
CommutativeLaw
~(p→q)^(p↔q)≡{(p^[~q^(pv~q)]}^(~pvq)
AssociativeLaw
~(p→q)^(p↔q)≡{(p^[~q^(pv~q)]}^(~pvq)
AssociativeLaw

z
Group Enrichment Exercises
3.~(p→q)^(p↔q)
~(p→q)^(p↔q)≡{(p^[~q^(~qvp)]}^(~pvq)
CommutativeLaw
~(p→q)^(p↔q)≡{(p^[~q^(~qvp)]}^(~pvq)
CommutativeLaw
~(p→q)^(p↔q)≡(p^~q)^(~pvq)
AbsorptionLaw
~(p→q)^(p↔q)≡(p^~q)^(~pvq)
AbsorptionLaw
~(p→q)^(p↔q)≡p^[~q^(~pvq)]
AssociativeLaw
~(p→q)^(p↔q)≡p^[(~q^~p)v(~q^q)]
DistributiveLaw
~(p→q)^(p↔q)≡p^[(~q^~p)v(~q^q)]
DistributiveLaw
~(p→q)^(p↔q)≡p^[(~q^~p)v(q^~q)]
CommutativeLaw
~(p→q)^(p↔q)≡p^[(~q^~p)vF]
InverseLaw
~(p→q)^(p↔q)≡p^(~q^~p)
IdentityLaw
~(p→q)^(p↔q)≡p^(~q^~p)
IdentityLaw
~(p→q)^(p↔q)≡p^[(~q^~p)vF]
InverseLaw

z
Group Enrichment Exercises
3.~(p→q)^(p↔q)
~(p→q)^(p↔q)≡p^(~p^~q)
CommutativeLaw
~(p→q)^(p↔q)≡p^(~p^~q)
CommutativeLaw
~(p→q)^(p↔q)≡(p^~p)^~q
AssociateLaw
~(p→q)^(p↔q)≡F^~q
InverseLaw
~(p→q)^(p↔q)≡~q^F
CommutativeLaw
~(p→q)^(p↔q)≡F
UniversalBoundLaw

z
•Levin, O. (2019). Discrete Mathematics: An Open Introduction 3
rd
Edition. Colorado: School of Mathematics Science
University of Colorado.
•Aslam, A. (2016). Proposition in Discrete Mathematics retrieved from https://www.slideshare.net/AdilAslam4/chapter-1-
propositions-in-discrete-mathematics
•Operator Precedence retrieved from http://intrologic.stanford.edu/glossary/operator_precedence.html
REFERENCES