Free Electron Theory
Many solids conduct electricity.
There are electrons that are not bound to atoms but are able to move through the
whole crystal.
Conductingsolidsfallintotwomainclasses;metalsandsemiconductors.
andincreasesbytheadditionofsmall
amounts of impurity. The resistivity normally decreases monotonically with
decreasing temperature.
andcanbereducedbytheadditionof
small amounts of impurity.
Semiconductors tend to become insulators at low T.68
( ) ;10 10
metals
RT m
( ) ( )
pure semiconductor metal
RT RT
Why mobile electrons appear in some
solids and others?
Whentheinteractionsbetweenelectronsareconsideredthis
becomesaverydifficultquestiontoanswer.
Thecommonphysicalpropertiesofmetals;
•Greatphysicalstrength
•Highdensity
•Goodelectricalandthermalconductivity,etc.
Thischapterwillcalculatethesecommonpropertiesofmetals
usingtheassumptionthatconductionelectronsexistandconsist
ofallvalenceelectronsfromallthemetals;thusmetallicNa,Mg
andAlwillbeassumedtohave1,2and3mobileelectronsper
atomrespectively.
Asimpletheoryof‘freeelectronmodel’whichworks
remarkablywellwillbedescribedtoexplainthesepropertiesof
metals.
Why mobile electrons appear in some
solids and not others?
Accordingtofreeelectronmodel(FEM),the
valanceelectronsareresponsibleforthe
conductionofelectricity,andforthisreasonthese
electronsaretermedconductionelectrons.
Na
11
→1s
2
2s
2
2p
6
3s
1
Thisvalanceelectron,whichoccupiesthethirdatomicshell,
istheelectronwhichisresponsiblechemicalpropertiesof
Na.
Valance electron (loosely bound)
Core electrons
WhenwebringNaatomstogethertoformaNa
metal,
NahasaBCCstructureandthedistancebetween
nearestneighboursis3.7A˚
The radius of the third shell in Na is 1.9 A˚
SolidstateofNaatomsoverlapslightly.Fromthis
observationitfollowsthatavalanceelectronisno
longerattachedtoaparticularion,butbelongsto
bothneighbouringionsatthesametime.
Na metal
Therefore,theseconductionelectronscanbe
consideredasmovingindependentlyinasquare
welloffinitedepthandtheedgesofwell
correspondstotheedgesofthesample.
Considerametalwithashapeofcubewithedge
lengthofL,
ΨandEcanbefoundbysolvingSchrödingerequation
0
L/2
V
L/22
2
2
E
m
0V
Since,( , , ) ( , , )x L y L z L x y z
•By means of periodic boundary conditions Ψ’s are running waves.
The solutions of Schrödinger equations are plane waves,
where V is the volume of the cube, V=L
3
So the wave vector must satisfy
where p, q, r taking any integer values; +ve, -ve or zero.()11
( , , )
x y z
i k x k y k zi k r
x y z e e
VV
Normalization constantNa p 2
,where k
2
Na p
k
22
k p p
Na L
2
x
kp
L
2
y
kq
L
2
z
kr
L
; ;
The wave function Ψ(x,y,z) corresponds to an
energy of
the momentum of
Energy is completely kinetic22
2
k
E
m
2
2 2 2
()
2
x y z
E k k k
m
( , , )
x y z
p k k k 22
21
22
k
mv
m
2 2 2 2
m v k pk
Weknowthatthenumberofallowedkvalues
insideasphericalshellofk-spaceofradiuskof2
2
( ) ,
2
Vk
g k dk dk
whereg(k)isthe
densityofstatesper
unitmagnitudeofk.
The number of allowed states
per unit energy range?
Eachkstaterepresentstwopossibleelectron
states,oneforspinup,theotherisspindown.( ) 2 ( )g E dE g k dk ( ) 2 ( )
dk
g E g k
dE
22
2
k
E
m
2
dE k
dk m
2
2mE
k ()gE 2 ( )gk dk
dE 2
2
2
V
k k 2
2mE 2
m
k 3/ 2 1/ 2
23
(2 )
2
()
V
mEgE
Ground state of the free electron
gas
Electronsarefermions(s=±1/2)andobey
Pauliexclusionprinciple;eachstatecan
accommodateonlyoneelectron.
Thelowest-energystateofNfree
electronsisthereforeobtainedbyfilling
theNstatesoflowestenergy.
ThusallstatesarefilleduptoanenergyE
F,
known asFermi energy,obtainedby
integratingdensityofstatesbetween0andE
F,
shouldequalN.Hence
Remember
Solve for E
F(Fermi energy);2 / 3
22
3
2
F
N
E
mV
3/ 2 1/ 2
23
(2 )
2
()
V
mEgE
3/ 2 1/ 2 3/ 2
2 3 2 3
00
( ) (2 ) (2 )
23
FF
EE
F
VV
N g E dE m E dE mE
The occupied states are inside the Fermi sphere in k-space
shown below; radius is Fermi wave number k
F.22
2
F
F
e
k
E
m
k
z
k
y
k
x
Fermi surface
E=E
F
k
F2 / 3
22
3
2
F
N
E
mV
From thesetwo equation k
F
can be found as,1/ 3
2
3
F
N
k
V
The surface of the Fermi sphere represent the
boundary between occupied and unoccupied k
states at absolute zero for the free electron gas.
Typicalvaluesmaybeobtainedbyusing
monovalentpotassiummetalasanexample;for
potassiumtheatomicdensityandhencethe
valanceelectrondensityN/Vis1.402x10
28
m
-3
so
that
Fermi (degeneracy) Temperature T
F by19
3.40 10 2.12
F
E J eV
1
0.746
F
kA
F B F
E k T 4
2.46 10
F
F
B
E
TK
k
Itisonlyatatemperatureofthisorderthatthe
particlesinaclassicalgascanattain(gain)
kineticenergiesashighasE
F.
OnlyattemperaturesaboveT
Fwillthefree
electrongasbehavelikeaclassicalgas.
Fermimomentum
Thesearethemomentum andthevelocityvalues
oftheelectronsatthestatesontheFermi
surfaceoftheFermisphere.
So,FermiSphereplaysimportantroleonthe
behaviourofmetals.FF
Pk F e F
P m V 61
0.86 10
F
F
e
P
V ms
m
2 / 3
22
3
2.12
2
F
N
E eV
mV
1/ 3
2
13
0.746
F
N
kA
V
61
0.86 10
F
F
e
P
V ms
m
4
2.46 10
F
F
B
E
TK
k
Typical values of monovalent potassium metal;
The free electron gas at finite temperature
AtatemperatureTtheprobabilityofoccupation
ofanelectronstateofenergyEisgivenbythe
Fermidistributionfunction
Fermidistributionfunctiondeterminesthe
probabilityoffindinganelectronattheenergy
E.( ) /
1
1
FB
FD E E k T
f
e
E
FE<E
F E>E
F
0.5
f
FD(E,T)
E( ) /
1
1
FB
FD E E k T
f
e
Fermi Function at T=0
and at a finite temperature
f
FD=? At 0°K
i.E<E
F
ii.E>E
F( ) /
1
1
1
FB
FD E E k T
f
e
( ) /
1
0
1
FB
FD E E k T
f
e
Fermi-Dirac distribution function at
various temperatures,
T>0
T=0
n(E,T)
E
g(E)
E
F
n(E,T)numberoffree
electronsperunitenergy
rangeisjustthearea
undern(E,T)graph.( , ) ( ) ( , )
FD
n E T g E f E T
Number ofelectronsperunitenergyrange
accordingtothefreeelectronmodel?
Theshadedareashowsthechangeindistribution
betweenabsolutezeroandafinitetemperature.
Fermi-Diracdistributionfunctionisa
symmetric function; at finite
temperatures,thesamenumberoflevels
belowE
Fisemptiedandsamenumberof
levelsaboveE
Farefilledbyelectrons.
T>0
T=0
n(E,T)
E
g(E)
E
F
Heat capacity of the free electron
gas
Fromthediagramofn(E,T)thechangeinthe
distributionofelectronscanberesembledinto
trianglesofheight1/2g(E
F)andabaseof2k
BTso
1/2g(E
F)k
BTelectronsincreasedtheirenergyby
k
BT.
T>0
T=0
n(E,T)
E
g(E)
E
F
Thedifferenceinthermal
energyfromthevalueat
T=0°K21
( ) (0) ( )( )
2
FB
E T E g E k T
Differentiating with respect to T gives the
heat capacity at constant volume,2
()
v F B
E
C g E k T
T
2
()
3
33
()
22
FF
F
F B F
N E g E
NN
gE
E k T
22 3
()
2
v F B B
BF
N
C g E k T k T
kT
3
2
vB
F
T
C Nk
T
Heat capacity of
Free electron gas
Transport Properties of Conduction Electrons
Fermi-Diracdistributionfunctiondescribesthe
behaviourofelectronsonlyatequilibrium.
Ifthereisanappliedfield(EorB)ora
temperaturegradientthetransportcoefficientof
thermalandelectricalconductivitiesmustbe
considered.
Transport coefficients
σ,Electrical
conductivity
K,Thermal
conductivity
Total heat capacity at low temperatures
where γ and βare constants and they can
be found drawing C
v/T as a function of T
23
C T T
Electronic
Heat capacity
Lattice Heat
Capacity
Equationofmotionofanelectronwithanapplied
electricandmagneticfield.
ThisisjustNewton’slawforparticlesofmassm
e
andcharge(-e).
Theuseoftheclassicalequationofmotionofa
particletodescribethebehaviourofelectronsin
planewavestates,whichextendthroughoutthe
crystal.Aparticle-likeentitycanbeobtainedby
superposingtheplanewavestatestoforma
wavepacket.e
dv
m eE ev B
dt
The velocity of the wavepacket is the group
velocity of the waves.Thus
So one can use equation of mdv/dt1
ee
d dE k p
v
mmdk dk
22
2
e
k
E
m
pk
e
dv v
m eE ev B
dt
= mean free time between collisions. An electron
loses all its energy in time
(*)
In the absence of a magnetic field, the applied E
results a constant acceleration but this will not
cause a continuous increase in current. Since
electrons suffer collisions with
phonons
electrons
The additional term cause the velocity v to
decay exponentially with a time constant when
the applied E is removed.e
v
m
The Electrical Conductivty
In the presence of DC field only,eq.(*) has the
steady state solution
Mobility determines how fast the charge carriers
move with an E.e
e
vE
m
a constant of
proportionality
(mobility)e
e
e
m
Mobility for
electron
Electrical current density,J
Where n is the electron density and v is drift
velocity.Hence()J n e v N
n
V
2
e
ne
JE
m
JE 2
e
ne
m
e
e
vE
m
Electrical conductivity
Ohm’s law1
L
R
A
Electrical Resistivity and Resistance
Collisions
Inaperfectcrystal;thecollisionsofelectronsare
withthermallyexcitedlatticevibrations
(scatteringofanelectronbyaphonon).
Thiselectron-phonon scatteringgivesa
temperaturedependent collisiontime
whichtendstoinfinityasT0.
Inrealmetal,theelectronsalsocollidewith
impurity atoms, vacancies and other
imperfections,thisresultinafinitescattering
time evenatT=0.()
ph
T 0
The total scattering rate for a slightly imperfect
crystalat finite temperature;
So the total resistivity ρ,
This is known as Mattheisen’s rule and illustrated in
following figure for sodium specimen of different
purity.0
1 1 1
()
ph
T
Due to phonon
Due to imperfections02 2 2
0
()
()
e e e
I
ph
m m m
T
ne ne T ne
Ideal resistivity
Residual resistivity
Residual resistance ratio
Residual resistance ratio = room temp. resistivity/ residual resistivity
and it can be as high as for highly purified single crystals.6
10
Temperature
pure
impure
Collision time 10 1
5.3 10 ( )
pureNa
residual
xm
71
( ) 2.0 10 ( )
sodium
RT x m
28 3
2.7 10n x m
e
mm 14
2
2.6 10
m
xs
ne
11
7.0 10xs
6
1.1 10 /
F
v x m s ( ) 29l RT nm ( 0) 77l T m
can be found by taking
at RT
at T=0F
lv
Taking ; and
Thesemeanfreepathsaremuchlongerthantheinteratomic
distances,confirmingthatthefreeelectronsdonotcollidewiththe
atomsthemselves.
Thermal conductivity, Kmetals non metals
KK
1
3
VF
K C v l V
C
Due to the heat tranport by the conduction electrons
Electronscomingfromahotterregionofthemetalcarry
morethermalenergythanthosefromacoolerregion,resultingina
netflowofheat.Thethermalconductivityl F
v B
kT F
F
lv 21
2
F e F
mv
where is the specific heat per unit volume
is the mean free path; and Fermi energy
isthemeanspeedofelectronsresponsibleforthermalconductivity
sinceonlyelectronstateswithinabout of changetheir
occupationasthetemperaturevaries.2 2 2
21 1 2
()
3 3 2 3
B
V F B F
F e e
N T nk T
K C v k
V T m m
2
2
vB
F
T
C Nk
T
where
Wiedemann-Franz law2
e
ne
m
22
3
B
e
nk T
K
m
2
2
82
2.45 10
3
Kk
x W K
Te
B
The ratio of the electrical and thermal conductivities is independent of the
electron gas parameters;82
2.23 10
K
L x W K
T
Lorentz
number
For copper at 0 C