Fundamentals of Data Analytics chapter 2

aniszahiraha 1 views 31 slides Oct 09, 2025
Slide 1
Slide 1 of 31
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31

About This Presentation

this chapter is about the fundamental of data analytics in internet of things


Slide Content

Fundamentals
of Data
Analytics
CSC1212 IOT DATA
ANALYTICS

Learning objectives
At the end of this chapter, student should be able to:
1.Define the IoT analytics
2.Determine the categorization of data
3.Explain the challenges of IoT Analytics

IMAGINE:
WHAT IF THINGS START TO THINK???

An introduction to IoT Data
Analytics
▪inIoTworld,thecreationofmassiveamountsofdata
fromsensorsiscommonandoneofthebiggest
challenges–notonlyfromatransportperspectivebut
alsofromadatamanagementstandpoint.
▪Example:Modernjetenginesarefittedwiththousands
ofsensorsthatgenerateawhopping10GBofdataper
second
▪analysingthisamountofdatainthemostefficient
mannerpossiblefallsundertheumbrellaofdata
analytics

An introduction to IoT Data
Analytics
▪Notalldataisthesame;itcanbecategorizedandthusanalyzedin
differentways.
▪Dependingonhowdataiscategorized,variousdataanalyticstoolsand
processingmethodscanbeapplied.
▪TWOimportantcategorizationfromanIoTperspectivearewhetherthedata
isstructuredorunstructuredANDwhetheritisinmotionoratrest.

Structured vs Unstructured Data
❑structuredandunstructureddataareimportantclassificationsasthey
typicallyrequiredifferenttoolsetfromadataanalyticsperspective.
❑structureddatameansthedatafollowsamodelorschemathatdefines
howthedataisrepresentedororganized,meaningitfitswellwitha
traditionalrelationaldatabasemanagementsystem(RDBMS)
❑thestructureddatainasimpletabularform–forexample,spreadsheet
wheredataoccupiesaspecificcellandcanbeexplicitlydefinedand
referenced

Structured vs Unstructured Data
❑structureddataiseasilyformatted,stored,queriedandprocessed.
❑becauseofthehighlyorganizationalformatofstructureddata,awidearray
ofdataanalyticstoolsarereadilyavailableforprocessingthistypeofdata
❑MicrosoftExcel
❑Tableau

Structured vs Unstructured Data
❑Unstructureddatalacksalogicalschemaforunderstandinganddecoding
thedatathroughprogramming.
❑Example,text,speech,imagesandvideos.
❑Asageneralrule,anydatadoesnotfitneatlyintoapredefineddatamodel
isclassifiedasunstructureddata.

Structured vs Unstructured Data
❑Accordingtosomeestimates,around80%ofabusiness’sdatais
unstructured.
❑Becauseofthisfact,dataanalyticsmethodsthatcanbeappliedto
unstructureddatacanbecognitivecomputingandmachinelearning.
[cognitivecomputing:hardwareand/orsoftwarethatmimicsthefunctioningofthe
humanbrainandhelpstoimprovehumandecision-making]

Data in Motion vs Data at Rest
❑DatainIoTnetworksiseitherintransit(“datainmotion”)orbeingheldor
stored(“dataatrest”).
❑Examplesofdatainmotionincludetraditionalclient/serverexchanges,
suchaswebbrowsingandfiletransfersandemail.
❑datasavedtoaharddrive,storagearrayorUSBdriveisdataatrest.

Data in Motion vs Data at Rest
❑FromIoTperspective,thedatafromsmartobjectisconsidereddatain
motionasitpassesthroughthenetworkenroutetoitsfinaldestination.
❑thisoftenprocessedattheedgeusingfogcomputing.
❑Attheedge,datamaybefilteredanddeletedorforwardedonfurther
processingandpossiblestorageatafognodeorindatacenter.
❑DataatrestinIoTnetworkscanbetypicallyfoundinIoTbrokersorinsome
sortofstoragearrayatthedatacenter

What is Data Analytics?
Dataanalyticsisthescienceandart!Applyingthestatisticaltechniquesto
largedatasetstoobtainactionableinsightsformakingsmartdecisions.
Itistheprocessuncoverhiddenpatterns,unknowncorrelations,trends,any
otherusefulbusinessinformation.

Type of
Data
Analysis
•What is happening?
Descriptive
•Why did it happen?
Diagnostic
•What is likely to happen?
Predictive
•What should I do about it?
Prescriptive

•Descriptivedataanalysistellsyouwhatishappening,either
noworinthepast.
•Forexample,athermometerinatruckenginereports
temperaturevalueseverysecond.
•Fromadescriptiveanalysisperspective,youcanpullthis
dataatanymomenttogaininsightintothecurrent
operatingconditionofthetruckengine.
•Ifthetemperaturevalueistoohigh,thentheremaybea
coolingproblem,ortheenginemaybeexperiencingtoo
muchload
Descriptive

•Whenyouareinterestedinthe“why,”diagnosticdataanalysis
canprovidetheanswer.
•Continuingwiththeexampleofthetemperaturesensorinthe
truckengine,youmightwonderwhythetruckenginefailed.
•Diagnosticanalysismightshowthatthetemperatureofthe
enginewastoohigh,andtheengineoverheated.
•Applyingdiagnosticanalysisacrossthedatageneratedbya
wide
•rangeofsmartobjectscanprovideaclearpictureofwhya
•problemoraneventoccurred
Diagnostic

•Predictiveanalysisaimstoforetellproblemsorissues
beforetheyoccur.
•Forexample,withhistoricalvaluesoftemperaturesforthe
truckengine,predictiveanalysiscouldprovideanestimate
ontheremaininglifeofcertaincomponentsintheengine.
•Thesecomponentscouldthenbeproactivelyreplaced
beforefailureoccurs.
•Orperhapsiftemperaturevaluesofthetruckenginestartto
riseslowlyovertime,thiscouldindicatetheneedforanoil
changeorsomeothersortofenginecoolingmaintenance.
Predictive

•Prescriptiveanalysisgoesastepbeyondpredictiveand
recommendssolutionsforupcomingproblems.
•Aprescriptiveanalysisofthetemperaturedatafromatruck
enginemightcalculatevariousalternativestocost-
effectivelymaintainourtruck
•Thesecalculationscouldrangefromthecostnecessaryfor
morefrequentoilchangesandcoolingmaintenanceto
installingnewcoolingequipmentontheengineorupgrading
toaleaseonamodelwithamorepowerfulengine.
•Prescriptiveanalysislooksatavarietyoffactorsandmakes
theappropriaterecommendation
Prescriptive

Both predictive and prescriptive analyses are more resource intensive and increase
complexity, but the value they provide is much greater than the value from descriptive
and diagnostic analysis

IoT Analytics Challenges
Too much
data
Security
Misbehaving
devices

IoT Analytics Challenges
Too
much
data
The total amount of data
being collected may be so
large that it may not be
possible to move it over the
network to a central location

IoT Analytics Challenges
SecurityIf the security on a specific vendor’s
outdoor sensor is weak, and the sensor is
connected to other devices, the likelihood
of ‘indirect’ critical impact is high.
Attackers can compromise the sensor and
modify its data or exploit the connection to
other devices to cause damage.

IoT Analytics Challenges
Misbehaving
device These are devices or sensors that go
bad and begin sending false readings
to the system. For example, a low
battery, a software bug, or a hardware
failure, could cause such readings.
This could ruin the inventory of the
warehouse.

Conclusion

Class Activities
1.Take your Phone Camera, walk around in the campus and take any picture that you think can be
capture any data of it.
2.Present your finding in the class. The slide presentation should include what type of
categorization of data is your finding
and what is the challenge to do the analysis of it.
Tags