Fundamentals__Robotics_Jacobian_part1.ppt

amitshahtech 55 views 25 slides Jun 16, 2024
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

robotics lecture


Slide Content

Velocity Analysis
Jacobian
University of Bridgeport
1
Introduction to ROBOTICS

Kinematic relations




















6
5
4
3
2
1






 























z
y
x
X
Joint Space
Task Space
θ =IK(X)
Location of the tool can be specified using a joint space or a cartesian space
description
X=FK(θ)

Velocity relations
Joint Space
Task Space
•Relation between joint velocity and cartesian
velocity.
•JACOBIAN matrix J(θ)



















6
5
4
3
2
1











 



















z
y
x
z
y
x





 

)(JX XJ

)(
1


Jacobian
•Suppose a position and orientation vector of a
manipulator is a function of 6 joint variables: (from
forward kinematics)
X = h(q)























z
y
x
X 16
6
5
4
3
2
1
)(






















q
q
q
q
q
q
h 166216
6215
6214
6213
6212
6211
),,,(
),,,(
),,,(
),,,(
),,,(
),,,(






















qqqh
qqqh
qqqh
qqqh
qqqh
qqqh





Jacobian Matrix
Forward kinematics)(
116 
nqhX q
dq
qdh
dt
dq
dq
qdh
qh
dt
d
X
n

)()(
)(
116 
 



















z
y
x
z
y
x





 1
2
1
6
)(





















nn
n
q
q
q
dq
qdh



 1616 
nnqJX  dq
qdh
J
)(

Jacobian Matrix



















z
y
x
z
y
x





 1
2
1
6
)(





















nn
n
q
q
q
dq
qdh



 nn
n
n
n
q
h
q
h
q
h
q
h
q
h
q
h
q
h
q
h
q
h
dq
qdh
J


















































6
6
2
6
1
6
2
2
2
1
2
1
2
1
1
1
6
)(




Jacobian is a function of
q, it is not a constant!

Jacobian Matrix




























Vz
y
x
X
z
y
x






 16 
nnqJX  










z
y
x
V



Linear velocity



















z
y
x Angular velocity
The Jacbian Equation1
2
1
1















nn
n
q
q
q
q




Example
•2-DOF planar robot arm
–Given l
1, l
2 ,Find: Jacobian

2

1
(x , y)
l
2
l
1





















),(
),(
)sin(sin
)cos(cos
212
211
21211
21211




h
h
ll
ll
y
x 





























)cos()cos(cos
)sin()sin(sin
21221211
21221211
2
2
1
2
2
1
1
1




lll
lll
hh
hh
J 













2
1







J
y
x
Y

Singularities
•The inverse of the jacobian matrix cannot be
calculated when
det [J(θ)] = 0
•Singular points are such values of θ that
cause the determinant of the Jacobian to
be zero

•Find the singularity configuration of the 2-DOF
planar robot arm








)cos()cos(cos
)sin()sin(sin
21221211
21221211


lll
lll
J 













2
1







J
y
x
X

2

1
(x , y)
l
2
l
1
x
Y
=0
V
determinant(J)=0 Not full rank0
2
Det(J)=0

Jacobian Matrix
•Pseudoinverse
–Let A be an mxn matrix, and let be the pseudoinverse
of A. If A is of full rank, then can be computed as: 
A 
A 












nmAAA
nmA
nmAAA
A
TT
TT
1
1
1
][
][

Jacobian Matrix
–Example: Find X s.t.













 2
3
011
201
x 






























24
51
41
9
1
21
15
02
10
11
][
1
1TT
AAAA 











16
13
5
9
1
bAx
Matlab Command: pinv(A)to calculate A
+

Jacobian Matrix
•Inverse Jacobian
•Singularity
–rank(J)<n : Jacobian Matrix is less than full rank
–Jacobian is non-invertable
–Boundary Singularities: occur when the tool tip is on the surface
of the work envelop.
–Interior Singularities: occur inside the work envelope when two
or more of the axes of the robot form a straight line, i.e., collinear












666261
262221
161211
JJJ
JJJ
JJJ
qJX




 



















6
5
4
3
2
1
q
q
q
q
q
q





 XJq

1
 5
q
1
q

Singularity
•At Singularities:
–the manipulator end effector cant move in
certain directions.
–Bounded End-Effector velocities may
correspond to unbounded joint velocities.
–Bounded joint torques may correspond to
unbounded End-Effector forces and torques.

Jacobian Matrix
•If
•Then the cross product,
xx
yy
zz
ab
A a B b
ab
   
   

   
   
    ()
y z z y
x y z x z z x
x y z x y y x
i j k a b a b
A B a a a a b a b
b b b a b a b


    




Remember DH parmeter
•The transformation matrix Ti i i i i i i
i i i i i i i
i i i
c -c s s s a c
s c c -s c a s
0 s c d
0 0 0 1
i
A
     
     






 i
i
AAAT .....
210

Jacobian Matrix 
nJJJJ ....
21

Jacobian Matrix
2-DOF planar robot arm
Given l1, l2 ,Find: Jacobian
•Here, n=2,

2

1
(x , y)
l
2
l
1

19
Where (θ
1 +θ
2 ) denoted by θ
12 andi i i i i i i
i i i i i i i
i i i
c -c s s s a c
s c c -s c a s
0 s c d
0 0 0 1
i
A
     
     






 01
0
0
1
ZZ





 1 1 1 1 2 1 2
0 1 1 1 2 1 1 2 1 2
0 cos cos cos( )
0 , sin , sin sin( )
0 0 0
a a a
O O a O a a
   
   
     
     
    
     
     
     

Jacobian Matrix
2-DOF planar robot arm
Given l1, l2 ,Find: Jacobian
•Here, n=20 2 0 1 2 1
12
0 1
() ()
,
z o o z o o
JJ
z z
  

 


2

1
(x , y)
l
2
l
1

Jacobian Matrix0 2 0
1
0
()z o o
J
z



 1 1 2 1 2
0 2 0 1 1 2 1 2
1 1 2 1 2 1 1 2 1 2
1 1 2 1 2
1 1 2 1 2
0 cos cos( )
( ) 0 sin sin( )
10
0 0 1
cos cos( ) sin sin( ) 0
sin sin( )
cos cos( )
0
aa
Z o o a a
i j k
a a a a
aa
aa
  
  
     
  
  
   
   
     
   
   
   




    

  

  




Jacobian Matrix1 2 1
2
1
()z o o
J
z



 2 1 2
1 2 1 2 1 2
2 1 2 2 1 2
2 1 2
2 1 2
0 cos( )
( ) 0 sin( )
10
0 0 1
cos( ) sin( ) 0
sin( )
cos( )
0
a
Z o o a
i j k
aa
a
a


   


   
   
    
   
   
   




 








Jacobian Matrix2 1 2
2 1 2
2
sin( )
cos( )
0
0
0
1
a
a
J











 1 1 2 1 2
1 1 2 1 2
1
sin sin( )
cos cos( )
0
0
0
1
aa
aa
J
  
  
  








  
12
J J J
The required Jacobian matrix J

Inverse Velocity
–The relation between the joint and end-effector velocities:
where j (m×n). If J is a square matrix (m=n), the joint
velocities:
–If m<n, let pseudoinverse J
+
where()X J q q 1
()q J q X

 1
[]
TT
J J JJ

 ()q J q X

Acceleration
–The relation between the joint and end-effector velocities:
–Differentiating this equation yields an expression for the
acceleration:
–Given of the end-effector acceleration, the joint
acceleration ()X J q q ( ) [ ( )]
d
X J q q J q q
dt
 X q ( ) [ ( )]
d
J q q X J q q
dt
 1
( )[ ( )] ]
d
q J q X J q q
dt


Tags