Gen Phy 1 - Lesson 2 - Vectors & Vector Addition.ppt
JCNicolas2
70 views
30 slides
Oct 13, 2024
Slide 1 of 30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
About This Presentation
General Physics 1 Lesson 2 on Vectors, Vector Addition
Size: 1.67 MB
Language: en
Added: Oct 13, 2024
Slides: 30 pages
Slide Content
I know where I’m
going
•A scalar is a quantity described by just a number, usually with units. It can be positive,
negative, or zero.
•Examples:
–Distance
–Time
–Temperature
–Speed
•A vector is a quantity with magnitude and direction. The magnitude of a vector is a
nonnegative scalar.
•Examples:
–Displacement
–Force
–Acceleration
–Velocity
Magnitude, what is it?
The magnitude of something is its size.
Not “BIG” but rather “HOW BIG?”
Magnitude and Direction
When specifying some (not all!) quantities, simply stating its
magnitude is not good enough.
For example: ”Where’s the library?,” you need to give a vector!
Quantity Category
1.5 m
2.30 m/sec, East
3.5 miles, North
4.20 degrees Celsius
5.256 bytes
6.4,000 Calories
Magnitude and Direction
Giving directions:
–How do I get to the Virginia
Beach Boardwalk from
Norfolk?
–Go 25 miles. (scalar, almost
useless).
–Go 25 miles East. (vector,
magnitude & direction)
Graphical Representation of Vectors
Vectors are represented by an arrow.
The length indicates its magnitude.
The direction the arrow point determines
its direction.
Vector r
Has a magnitude of 1.5 meters
A direction of = 25
0
E 25 N
The Negative of a Vector
Same length (magnitude) opposite direction
Tail to Tip Method Steps:
i.Draw a coordinate axes
ii.Plot the first vector with the tail at the origin
iii.Place the tail of the second vector at the tip of the first vector
iv.Draw in the resultant (sum) tail at origin, tip at the tip of the
2
nd
vector. (Label all vectors)
1.Graphically – Use ruler, protractor, and graph paper.
i. Tail to tip method
ii. Parallelogram method
2.Mathematically – Use trigonometry and algebra
2 vectors same direction
Add the following vectors
•d
1
= 40 m east
•d
2 = 30 m east
•What is the resultant?
d
1 = 40 m eastd
2 = 30 m east
d
1
+ d
2
= 70 m east
Just add, resultant the sum in the same direction.
Use scale 1cm = 10m
d
1
= 40 m eastd
2 = 30 m west
d
1
+ d
2
= 10 m east
Subtract, resultant the difference and in the direction of the larger.
2 vectors opposite direction
Add the following vectors
•d
1 = 40 m east
•d
2 = 30 m west
•What is the resultant?
Use scale 1cm = 10m
2 perpendicular vectors
Add the following vectors
•v
1 = 40 m east
•v
2 = 30 m north
•Find R
v
1 = 40 m east
v
2
= 30 m north
R
1.Measure angle with a protractor
2.Measure length with a ruler
3.Use scale 1cm = 10m
4.R = 50 m, E 37
0
N
2 random vectors
To add two vectors together, lay the arrows tail to tip.
For example C = A + B
link
Use scale 1cm = 10m
1.The magnitude of the resultant vector will be greatest when
the original 2 vectors are positioned how? (0
0
between them)
2.The magnitude will be smallest when the original 2 vectors
are positioned how? (180
0
between them)
How does changing the order change the resultant?
It doesn’t!
The order in which you add vectors doesn’t effect the resultant.
A + B + C + D + E=
C + B + A + D + E =
D + E + A + B + C
The resultant is the same regardless of the order.
link
adding 3 vectors
We cannot just add 20 and 35 to get resultant vector!!
Example: A car travels
1.20.0 km due north
2.35.0 km in a direction N 60° W
3.Find the magnitude and direction of the car’s resultant
displacement graphically.
Use scale 1cm = 10km
Parallelogram Method Steps:
1.Draw a coordinate axes
2.Plot the first vector with the tail at the origin
3.Plot the second vector with its the tail also at the origin
4.Complete the parallelogram
5.Draw in the diagonal, this is the resultant.
1.Graphically – Use ruler, protractor, and graph paper.
i. Tail to tip method
ii. Parallelogram method
2.Mathematically – Use trigonometry and algebra
A
B
R
You obtain the same result using either method.
Tail to Tip MethodParallelogram Method
Add the following velocity vectors using the
parallelogram method
V
1
= 60 km/hour east
V
2 = 80 km/hour north
F
1
+ F
2
= F
3
= R
u + v = R
Step 1:
Draw both
vectors with tails
at the origin
Step 2:
Complete the
parallelogram
Step 3:
Draw in the
resultant
Vector Subtraction
Simply add its negative
For example, if D = A - B then use
link
Vector Multiplication
To multiply a vector by a scalar
Multiply the magnitude of the vector by the scalar (number).
Adding Vectors Mathematically (Right angles)
Use Pythagorean Theorem
Trig Function
2 2 2
a b c
tan
opp
adj
A
B
R
2 2 2
2 2 2
3 5
34
5.9
A B R
R
R
R units
1
0
tan
5
tan
4
5
tan
4
51.3
opp
adj
Ex: If A=3, and B=5, find R
I walk 45 m west, then 25 m south.
What is my displacement?
A = 45 m west
B = 25 m south
C
C
2
= A
2
+ B
2
C
2
= (45 m)
2
+ (25 m)
2
C = 51.5 m
opposite
tanθ
adjacent
B
A
1 1 25
tan ta 9
5
θ n
4
2
B
A
C = 51 m W 29
o
S
Find the magnitude and direction of the resultant vector below
2 7
8 15R
8 N
15 N
R
=
R
e
su
lta
n
t F
o
rc
e
V
e
c
to
r
17R N