General-Trinomials for public schoolpptx

AxelJonCorpuz2 12 views 73 slides Oct 01, 2024
Slide 1
Slide 1 of 73
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73

About This Presentation

Trinomials for grade 7


Slide Content

Factoring Method #5 Factoring a trinomial in the form:   where a = 1

Factoring a trinomial : 2. Product of first terms of both binomials must equal to first term of the trinomial. 1. Write two sets of parenthesis, ( )( ). These will be the factors of the trinomial.    

3. The product of last terms of both binomials must equal to last term of the trinomial ( c ). 4. Think of the FOIL method of multiplying binomials, the sum of the outer and the inner products must equal the middle term ( bx ). Factoring a trinomial :  

x x Factors of +8: 1 & 8 2 & 4 -1 & -8 -2 & -4 2 x + 4 x = 6 x 1 x + 8 x = 9 x O + I = bx ? -2 x - 4 x = -6 x -1 x - 8 x = -9 x + 2 + 4 Example: x 2 + 6x + 8 ( ) ( )

NOTE: By commutative property, factors can be interchanged. Hence, the factors of x 2 + 6x + 8 ( x+2 ) ( x+4 ) can also be expressed as ( x+4 ) ( x+2 )

= ( x + 2 ) ( x + 4 ) x 2 + 6x + 8 Check your answer by using FOIL (x+2) (x+4) = x 2 + 4x + 2x + 8 F O I L (x+2) (x+4) = x 2 + 6x + 8 

Another Example: x 2 + 4x + 3 = ( ) ( ) x x +3 +1  3 1 + 3 + 1

Therefore x 2 + 4x + 3 = ( x + 3 ) ( x + 1 ) Check using FOIL

Another Example: x 2 + 2x + 1 = ( ) ( ) x x +1 +1 1 1 + 1 + 1

Therefore x 2 + 2x + 1 = ( x + 1 ) ( x + 1 ) Check using FOIL

Another Example: x 2  x  6 = ( ) ( ) x x +3 2 3 +2  3 + 2 +6 1 6 +1

Therefore x 2  x  6 = ( x  3 ) ( x + 2 ) Check using FOIL

Another Example: x 2 +2 x  15 = ( ) ( ) x x +5 3 5 +3 + 5  3 +15 1 15 +1

Therefore x 2 + 2 x  15 = ( x + 5 ) ( x  3 ) Check using FOIL

Try this. x 2 – 4x + 4 ( x – 2 ) ( x – 2 )

x 2 – 6x + 8 ( x – 2 ) ( x – 4 )

y 2 + 7y + 6 ( y + 6 ) ( y + 1 )

y 2 + 7y + 10 ( y + 2 ) ( y + 5 )

n 2 + 8n + 15 ( n + 5 ) ( n + 3 )

p 2 + 9p + 18 ( p + 3 ) ( p + 6 )

r 2 + 2r  15 ( r + 5 ) ( r  3 )

x 2 + 3x  18 ( x + 6 ) ( x  3 )

x 2 + 4x  21 ( x + 7 ) ( x  3 )

x 2 + x  12 ( x + 4 ) ( x  3 )

y 2 + 5y  36 ( y + 9 ) ( y  4 )

n 2 7n + 12 ( n – 3 ) ( n  4 )

x 2 + 3x  6 Not Factorable

x 2 + 2x  12 Not Factorable

p 2  5p  14 ( p + 2 ) ( p  7 )

p 2  14p + 24 ( p  2 ) ( p 12 )

a 2 + 6a  27 ( a + 9 ) ( a  3 )

a 2 + a  20 ( a + 5 ) ( a  4 )

m 2  5m  24 ( m – 8 ) ( m + 3 )

m 2  6m  12 Not Factorable

2x 2 + 16x + 30 2 ( x + 3 ) ( x + 5 ) 2 ( x 2 + 8x + 15 )

3x 2  9x  12 3 ( x + 1 ) ( x – 4 ) 3 ( x 2  3x  4 )

x 4 + 9x 2  22 ( x 2 + 11 ) ( x 2  2 )

x 4 + 3x 2  28 ( x 2 + 7 ) ( x 2  4 ) ( x + 2 )(x  2 ) ( x 2 + 7 )

Activity: x 2 + 8x + 7 x 2 + 6x + 9 x 2 + 11x + 30 x 2 – 8x + 15 x 2 – 13x + 36 x 2 + 3x – 10 x 2 + 2x – 48

8. x 2 – x – 20 9. x 2 – 4x – 8 10. y 2 – 6y – 16 11. p 4 + 2p 2 – 63 12. n 4 – 10n 2 – 24 13. 2x 2 + 16x + 30 14. 3x 2 + 3x – 126 15. 4x 4 – 28x 2 – 72

Answers

Factoring Trinomial such that a  1. You can u se trial and error method!  

2x 2 + 7x + 3 Example: ( ) ( ) 2x x ????! + 3 + 1 +3x +2x +5x ERROR! Try again!

2x 2 + 7x + 3 Example: ( ) ( ) 2x x ????! + 1 + 3 +x +6x +7x Bingo! Nice job!

Therefore: The factors of 2x 2 + 7x + 3 are ( 2x + 1 ) ( x + 3 )

Check using FOIL ( 2x + 1 ) ( x + 3 ) 2x 2 + 7x + 3

3x 2 + 14 x + 8 Example: ( ) ( ) 3x x ????! + 4 + 2 +4x +6x +10x ERROR! Try again!

3x 2 + 14 x + 8 Example: ( ) ( ) 3x x ????! + 8 + 1 +8x +3x +11x ERROR! Try again!

3x 2 + 14 x + 8 Example: ( ) ( ) 3x x ????! + 2 + 4 +2x +12x +14x Bingo! Nice job!

Therefore: The factors of 3x 2 + 14x + 8 are ( 3x + 2 ) ( x + 4 )

Check using FOIL ( 3x + 2 ) ( x + 4 ) 3x 2 + 14x + 8

2x 2 + 7 x  4 Example: ( ) ( ) 2x x ????!  2 + 2 2 x +4x +2x ERROR! Try again!

2x 2 + 7 x  4 Example: ( ) ( ) 2x x ????!  4 + 1 4 x +2x 2 x ERROR! Try again!

2x 2 + 7 x  4 Example: ( ) ( ) 2x x ????!  1 + 4  x +8x +7x Bingo! Nice job!

Therefore: The factors of 2x 2 + 7x  4 are ( 2x  1 ) ( x + 4 )

Check using FOIL ( 2x  1 ) ( x + 4 ) 2x 2 + 7x  4

Try this. ( 2x + 5 ) ( x + 1 ) 2x 2 + 7x + 5

( 4x + 3 ) ( x + 2 ) 4x 2 + 11x + 6

( 2x + 3 ) ( 2x + 1 ) 4x 2 + 8x + 3

( 3x + 1 ) ( 2x + 1) 6x 2 + 5x + 1

3 ( 2x 2 + 5x + 2 ) 6x 2 + 15x + 6 3 ( 2x + 1 ) ( x + 2)

( 2x + 1 ) ( x  3 ) 2x 2  5x  3

Not factorable 3x 2  8 x  4

( 3x + 4 ) ( x  2 ) 3x 2  2 x  8

( 3x + 4 ) ( 3x  5 ) 9x 2  3 x  20

( 2x + 7 ) ( 4x  3 ) 8x 2 + 22 x  21

Quiz/Assignment: Factor the following: 2x 2 + 9x + 7 4x 2 + 12x + 5 3. 2x 2 + 9x + 10 4. 3x 2 + 7x – 8 5. 2x 2 – 7x – 9

6. 4x 2 + 25x + 6 7. 5x 2 + 13x – 6 8. 10x 2 – 31x – 14 9. 4x 2 – 4x – 3 10. 15x 2 + 13x + 2

ANSWERS

( 2x + 7 ) ( x + 1 ) ( 2x + 5 ) ( 2x + 1 ) ( 2x + 5 ) ( x + 2 ) Not factorable ( 2x  9) ( x + 1 )

6. ( 4x + 1 ) ( x + 6 ) 7. ( 5x  2 ) ( x + 3 ) 8. ( 5x + 2 ) ( 2x  7) 9. ( 2x + 1 ) ( 2x  3) 10. ( 5x + 1 ) ( 3x + 2)

Factoring Technique #5 Factoring By Grouping for polynomials with 4 or more terms