Factoring Method #5 Factoring a trinomial in the form: where a = 1
Factoring a trinomial : 2. Product of first terms of both binomials must equal to first term of the trinomial. 1. Write two sets of parenthesis, ( )( ). These will be the factors of the trinomial.
3. The product of last terms of both binomials must equal to last term of the trinomial ( c ). 4. Think of the FOIL method of multiplying binomials, the sum of the outer and the inner products must equal the middle term ( bx ). Factoring a trinomial :
x x Factors of +8: 1 & 8 2 & 4 -1 & -8 -2 & -4 2 x + 4 x = 6 x 1 x + 8 x = 9 x O + I = bx ? -2 x - 4 x = -6 x -1 x - 8 x = -9 x + 2 + 4 Example: x 2 + 6x + 8 ( ) ( )
NOTE: By commutative property, factors can be interchanged. Hence, the factors of x 2 + 6x + 8 ( x+2 ) ( x+4 ) can also be expressed as ( x+4 ) ( x+2 )
= ( x + 2 ) ( x + 4 ) x 2 + 6x + 8 Check your answer by using FOIL (x+2) (x+4) = x 2 + 4x + 2x + 8 F O I L (x+2) (x+4) = x 2 + 6x + 8
Another Example: x 2 + 4x + 3 = ( ) ( ) x x +3 +1 3 1 + 3 + 1
Therefore x 2 + 4x + 3 = ( x + 3 ) ( x + 1 ) Check using FOIL
Another Example: x 2 + 2x + 1 = ( ) ( ) x x +1 +1 1 1 + 1 + 1
Therefore x 2 + 2x + 1 = ( x + 1 ) ( x + 1 ) Check using FOIL
Another Example: x 2 x 6 = ( ) ( ) x x +3 2 3 +2 3 + 2 +6 1 6 +1
Therefore x 2 x 6 = ( x 3 ) ( x + 2 ) Check using FOIL
Another Example: x 2 +2 x 15 = ( ) ( ) x x +5 3 5 +3 + 5 3 +15 1 15 +1
Therefore x 2 + 2 x 15 = ( x + 5 ) ( x 3 ) Check using FOIL
Try this. x 2 – 4x + 4 ( x – 2 ) ( x – 2 )
x 2 – 6x + 8 ( x – 2 ) ( x – 4 )
y 2 + 7y + 6 ( y + 6 ) ( y + 1 )
y 2 + 7y + 10 ( y + 2 ) ( y + 5 )
n 2 + 8n + 15 ( n + 5 ) ( n + 3 )
p 2 + 9p + 18 ( p + 3 ) ( p + 6 )
r 2 + 2r 15 ( r + 5 ) ( r 3 )
x 2 + 3x 18 ( x + 6 ) ( x 3 )
x 2 + 4x 21 ( x + 7 ) ( x 3 )
x 2 + x 12 ( x + 4 ) ( x 3 )
y 2 + 5y 36 ( y + 9 ) ( y 4 )
n 2 7n + 12 ( n – 3 ) ( n 4 )
x 2 + 3x 6 Not Factorable
x 2 + 2x 12 Not Factorable
p 2 5p 14 ( p + 2 ) ( p 7 )
p 2 14p + 24 ( p 2 ) ( p 12 )
a 2 + 6a 27 ( a + 9 ) ( a 3 )
a 2 + a 20 ( a + 5 ) ( a 4 )
m 2 5m 24 ( m – 8 ) ( m + 3 )
m 2 6m 12 Not Factorable
2x 2 + 16x + 30 2 ( x + 3 ) ( x + 5 ) 2 ( x 2 + 8x + 15 )
3x 2 9x 12 3 ( x + 1 ) ( x – 4 ) 3 ( x 2 3x 4 )
x 4 + 9x 2 22 ( x 2 + 11 ) ( x 2 2 )
x 4 + 3x 2 28 ( x 2 + 7 ) ( x 2 4 ) ( x + 2 )(x 2 ) ( x 2 + 7 )
Activity: x 2 + 8x + 7 x 2 + 6x + 9 x 2 + 11x + 30 x 2 – 8x + 15 x 2 – 13x + 36 x 2 + 3x – 10 x 2 + 2x – 48
8. x 2 – x – 20 9. x 2 – 4x – 8 10. y 2 – 6y – 16 11. p 4 + 2p 2 – 63 12. n 4 – 10n 2 – 24 13. 2x 2 + 16x + 30 14. 3x 2 + 3x – 126 15. 4x 4 – 28x 2 – 72
Answers
Factoring Trinomial such that a 1. You can u se trial and error method!