M
, -
M2
I
-
&
->
I
d
--
Fam
,
M2
&↓
2
d
F
-
am
,
M2
-
-
en
T
=
Er
mi M2
0
#
0
0
(0
,
0)
E=(E)
=
=
(a) ()
F
=
(a)(2)
e
-
2
=
(a)(-
)
=
-
e
which
on
is
notCant
BjMz
-
->Ce
-
Me
F21
=
?
am
,
M2
⑫
A)
IMe
W
r3
&
Fr
=
GM
,
M2
I
=
-
mine
e
-/
93
-
Mi
M2
R0
-
0
F
=
amer
-
-
F
=
-
Gm
,
mz
1]
21
-3
&
E
=
qMz
R
21 92
PYQ
Q
-
->
F I
-
0
- -
0
a
e
-
-
-
-
-
8
I
--
M2
M
-
R
W
-
->
F
L
00
-
S
---
-
m
------E
-
2R
F
=
Gz
=
mac
C
(2R)2was
⑰
em= mere
E
m
min
iS
R
I
=?
Kuch
0/
~
①
-
②
Zero
F
=
a
e
⑩nhi
⑭
-
~
3F
=
2Gm
,
M2
⑭
NOT
92
⑮
M2
-
F
-
Y7
E
-I
I
-
ISR
-
⑩u
R
QuW
-
⑪
aG
②
PP
⑭
X
⑭
③
DD
-5
/
-
GRAVITATION ON
PLANETGRAVITATION IN
SOLAR SYSTEM
HOW WE UTILIZE
GRAVITATION
TABLE OF CONTENTS
01
GRAVITATION IN
SOLAR SYSTEM
GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
Three Laws were given by Kepler
●Law of Orbits
●Law of Areas
●Law of Periods
GRAVITATION IN
SOLAR SYSTEM
1. Law of Orbits
All planets move in elliptical orbits with the Sun
situated at one of the foci of the ellipse.
1. Kepler’s Laws
GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
1. Law of Orbits
⑧
/
⑧
=
GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
1. Law of Orbits
mine
6
⑧
2b
I
icon
-
--
-
-
⑧
⑳
-one
-
-
i
Gar
,
o
I
(+ae
,
o)
C -
29
I
"¥
inmay
GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
2. Law of Areas
GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
2. Law of Areas
cocant
Vt
--
Aren↑
-
⑧8
swept
--
"¥
&
byposition
/
-I Ver~,
"¥
d
0
I
m
unit
fine
countdA
I
constIt
GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
2. Law of Areas
&
--
-
-
"¥
Aun=
10
-
④ Iye
-
-
-
-
-
5
unit
m
GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
2. Law of Areas
The line that joins any planet to the sun sweeps equal
areas in equal intervals of time.
Planets appear to move slower when they are farther
from the sun than when they are nearer.
GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
3. Law of Periods
&
&
⑧
F
29
-
a+2da
GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
3. Law of Periods
GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
3. Law of Periods
The square of the time period of revolution of a
planet is proportional to the cube of the semi-major
axis of the ellipse traced out by the planet.
O
Q
-
tit2
⑰tu
tz
2A
It
E
~
Q0
-
-
am
~v
=
r
N
-
"¥I
mu
⑧
=
MVR1
⑰
"¥
-
mil6
met16
Q
-
+2
&
i
①
Txa2
T#
92
Q
TaR2
T
=
T(1
.
01
=T(1+0
.
011
*
2T'x(101R)
32
=
+(1
+
z(0
.
01)
=
T
+
30
.
01)
x
T
T-
T
=
z(0
-
01)x5312 (T)
=
1
2
x0
.
01
x
,
00
-
=Y
=
-
Q
Plate
Se
-
-
stupts-
⑳ T
T
,
x"2
Fas
⑰
Qof
-
~
--zuhr
E 3
+
,
(*
=
R
-
6000
T
3
2
3 36000
(Eil()
(sor
↑
=
↓
I
R
-&+
4336000
I
=
&
36000I
=(8
=
Goo
-
R
=
36000
"¥
egon
PYQ
Q
-
GRAVITATION
ON PLANET02
GRAVITATION ON
PLANET
Acceleration due to gravity
RM
=
migF
=
E
⑧
summt---
·
M2
F
=
GMmiE
>
&
⑧
· -
mig
may
R2
Fr
-
Somme
-Mmz
GMM
SR2
&&
-
=
msg
Le
=msg
GRAVITATION ON
PLANET
Acceleration due to gravity
g
isaccdue
0 to
L=BM
geauity
I
-uR-my
·
-
9
ene
①itwillbe
Same
near
earthSurface
↓
aage
-
will
-
②
willit
never
chy
(g)
G
->
IsConstant
g
->
it
o 5
GRAVITATION ON
PLANET
Acceleration due to gravity
R
:
=
%
g
=
↑
g
=2
2
ng=
-
frig
:
-
g=?
g
:
g
=
q
=
2=
Fation
of
I
~
I
=
am
3 Rp
2
0
①th
O
!
Get
e
②With'd O
Wotation
4
y
O
GRAVITATION ON
PLANET
Acceleration due to gravity
a
-
2g
=
2
=
go()
nR
->
-g
=
Gr(
-
2)
1km
.
-eg
=
?g
=
fr(
-
2)
-
-
&
R
=
6400km
=
9)
=
Gr(1
-
500).
go
x
GRAVITATION ON
PLANET
Acceleration due to gravity
GRAVITATION ON
PLANET
Acceleration due to gravity
②
q
=
g.(1
-
2)Sa
g
=1
I
E
g
gol
!
640km
=
Gr(1
-
)
g
=
23
=
18
GRAVITATION ON
PLANET
Acceleration due to gravity
g
=
E
=
e
go
=
9.
=
ENSGR
↑
go
*
/
,
-
R
/
->
I-t
⑳
gwill
⑭
⑭
~
⑪
& ②h
-
X
W
⑭
③
-
④
-
GRAVITATION ON
PLANET
Acceleration due to gravity
①g
=
G
=
ISR
kacR
②
g
=
8 g
=
gr(-
-
④
gl
=
g(1
-
2)
⑤
g
=
gr-wirla
GRAVITATION ON
PLANET
Acceleration due to gravity
"¥
to
W↓
&
g
=
g5-
wil
I
G
=
g
.
-
wilas
⑰
I
-
-
- -
-
1
=
0
Is
g=
-
gr-w((o)
I
gl
=g
.
-
w
W
I
GRAVITATION ON
PLANET
Acceleration due to gravity
GRAVITATION ON
PLANET
Acceleration due to gravity
&
- -
ja
- -
9
SL
i
gr
=
am
R2
I
8
a
⑳
n
=
R
-
g
=
E
·
a go
A
R
-
R
=
R
Q
~
g
=
(π44
--
-
g
=x
2⑧
z
=
1
=
g
=
2y
Q
~
g
=
a
Ag
AMx
-
1
2
-- t
-
g
0
18
=
(
-
1)
-
(
-
1)
x2
-
I
=
-
1
+
2
=
+
Q
·
*
r
MP21R d
1- 1
.g
g
=
a
18
=
AMx)
-
1 x
I
=
(2)
+
(
+
H
-
)x2
=
2
+
2
=
4.1.
"¥
M12%
RY
Ht
.
g
=
a=At
,
e
I
-
4.1
Id
by
41
Q
-82 -Im
Re
-
1Rm
-Mm
&
c
=
GMe
qm
=
Ri
-
Re
GMe=
GeRe2
gmxRm
=
GMm=
amm
Q
~
"¥
.
-
wR
=
0g
=
Go
wR
=
Go
w
=
Go
-
R
w
=
F=
ood
R
w
=
=
=3
800
Q
g
=
gr-w
(W
=
My
=
m(g
--
wiR)
w
GRAVITATION ON
PLANET
Gravitational Field
"¥
Interity
the
->
LHollowSphere
Solid
Sphere
I
e
&
&
-
/
a
Fam/
a
/
I
0
-
92
-
In
I
-
En
d
"
-h
GRAVITATION ON
PLANET
Gravitational Field
Q
M
⑧
I I
T
*
u I
&
I
-
-
↓I
⑧
Me
↓
·
⑳
I
Q
-
:
⑦
F
=
mT
-
- "¥
=
0
-
/·
⑰g
/
~
GRAVITATION ON
PLANET
Gravitational Potential & Potential Energy
u
-
-
re
V-
GM
-
*
-2
Ex
-Sky
/
& mo
Faxt-
M--
-
-
-
F
0
R
Wext
=
-
105
W
=
-
10
I
V
=
m
=
5
=
-
2Ty
GRAVITATION ON
PLANET
Gravitational Potential & Potential Energy
M-
-
-
⑧
2
·
am
=
1
-
R
Mo
R
-mo
=
mov
Q
-
~
~
M
~
--
D
-
I E
m
O &
V
,
Ve
-
&
⑧ &
M
"¥M
KE+
PE
=
0
Ef
qve
-
ve
Q
~
R
=
ut
v
-
)
ar
-
(1
+
RR)
V
=
(1)
:
-
un)
R
·
E4
=
2R
es
V
=
!
-
=
v
I
49R
-
Q
-
-
-
-
-
~
Nega
k
T
-
"¥
go
n
=
h
zm=
2
012
2
v2x12
-
290h
-
2x12
=
24m
-
-
Q
GRAVITATION ON
PLANET
ESCAPE VELOCITY OF A BODY
Sumen
Arch
-
GMmo
⑧
Ve
U
=-
-
E
mo
RM
R
-
GMm
+Y
=
R
v
=
2 GM
-
⑦
C
R
GRAVITATION ON
PLANET
ESCAPE VELOCITY OF A BODY
+ 9
TE
=
Ove
⑧
+
8·
-
I
o
-
-
10
I
-
8
KE
>0
-
PECO
TE
=
0"¥IE
=
O4E
=0+
=
0
GRAVITATION ON
PLANET
ESCAPE VELOCITY OF A BODY
Q
- -
-
-
2GM=Ve
v
-
Rve=
-Ve
Q
-
PYQ
Q
-
-
)
I
)-
-
I
R
Q ve-g
-
-
-
X
Q
Q
Q
HOW WE UTILIZE
GRAVITATION
03
HOW WE UTILIZE
GRAVITATION
SATELLITE
~
-
-
"¥
-
·
x-
S
HOW WE UTILIZE
GRAVITATION
SATELLITE
-
S
&
vo
-
&
⑧
~
-
I
R
↑
I
M
~
-
-
am
-
=
-R
⑧
R
v
=
-FR
HOW WE UTILIZE
GRAVITATION
SATELLITE
-
-
ve
mo
-
-
-
!
-KE
=
m
I
-
IKE
=
Go
M
I 24
SLaz
--
I
/
I
Mo
r
/
TE
=
KE
+
PE
-
-
=
Emmo+fami
-
GMmo
=
-
22
①
v
=
a
②
=-
0
B
·
-->
O 0
I
~
2
③
GMmo
So
⑰
~
KE
=
It
=
S
PE
= -
Go
--
100
E
-
TE
=
-
GMmo
=
so
-
E2
HOW WE UTILIZE
GRAVITATION
SATELLITE
&
-
24h
-
I
0
Q
v
=--
29MR 2amR
-
X
-
⑫
2
R
R--
29R
I
=
r
gr
T
=
r
Ve 29
To
fr
Q
~
S
-
/
-S
Q
-
-
--
--
-
X
Vo
r
-
gR
PYQ
Q
RFz
-
-
- GMmo
-
-
&
-
M
"¥
MMezmo
-
-
moXammo
o
m
-
-
- n
-
7
X
&
v
=
rgr
~