gravitation .pdf

emmamathews573 3 views 85 slides Jul 15, 2024
Slide 1
Slide 1 of 118
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118

About This Presentation

hsadb


Slide Content

JEE 99% SERIES
GRAVITATIONGRAVITATION

M
, -
M2
I
-
&
->
I
d
--
Fam
,
M2
&↓
2
d
F
-
am
,
M2
-
-
en

T
=
Er
mi M2
0
#
0
0
(0
,
0)
E=(E)
=
=
(a) ()
F
=
(a)(2)
e
-
2
=
(a)(-
)
=
-
e

which
on
is
notCant
BjMz
-
->Ce
-
Me
F21
=
?
am
,
M2

A)
IMe
W
r3
&
Fr
=
GM
,
M2
I
=
-
mine
e
-/
93
-

Mi
M2
R0
-
0
F
=
amer
-
-
F
=
-
Gm
,
mz
1]
21
-3
&
E
=
qMz
R
21 92

PYQ

Q

-
->
F I
-
0
- -
0
a
e
-
-
-
-
-
8
I

--
M2
M
-
R
W
-
->
F
L
00
-
S
---
-
m
------E
-
2R
F
=
Gz
=
mac
C
(2R)2was

em= mere

E
m
min
iS
R
I
=?
Kuch
0/
~

-

Zero
F
=
a
e
⑩nhi

-
~
3F
=
2Gm
,
M2

NOT
92


M2
-
F
-
Y7
E
-I
I
-
ISR
-
⑩u
R
QuW
-

aG

PP

X


DD
-5
/
-

GRAVITATION ON
PLANETGRAVITATION IN
SOLAR SYSTEM
HOW WE UTILIZE
GRAVITATION
TABLE OF CONTENTS

01
GRAVITATION IN
SOLAR SYSTEM

GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
Three Laws were given by Kepler
●Law of Orbits
●Law of Areas
●Law of Periods

GRAVITATION IN
SOLAR SYSTEM
1. Law of Orbits
All planets move in elliptical orbits with the Sun
situated at one of the foci of the ellipse.
1. Kepler’s Laws

GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
1. Law of Orbits

/

=

GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
1. Law of Orbits
mine
6

2b
I
icon
-
--
-
-


-one
-
-
i
Gar
,
o
I
(+ae
,
o)
C -
29
I

inmay

GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
2. Law of Areas

GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
2. Law of Areas
cocant
Vt
--
Aren↑
-
⑧8
swept
--

&
byposition
/
-I Ver~,

d
0
I
m
unit
fine
countdA
I
constIt

GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
2. Law of Areas
&
--
-
-

Aun=
10
-
④ Iye
-
-
-
-
-
5
unit
m

GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
2. Law of Areas
The line that joins any planet to the sun sweeps equal
areas in equal intervals of time.
Planets appear to move slower when they are farther
from the sun than when they are nearer.

GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
3. Law of Periods
&
&

F
29
-
a+2da

GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
3. Law of Periods

GRAVITATION IN
SOLAR SYSTEM
1. Kepler’s Laws
3. Law of Periods
The square of the time period of revolution of a
planet is proportional to the cube of the semi-major
axis of the ellipse traced out by the planet.
O

Q
-
tit2
⑰tu
tz
2A
It
E
~

Q0
-
-
am
~v
=
r
N
-
"¥I
mu

=
MVR1


-
mil6
met16

Q
-
+2
&
i

Txa2
T#
92

Q
TaR2
T
=
T(1
.
01
=T(1+0
.
011
*
2T'x(101R)
32
=
+(1
+
z(0
.
01)
=
T
+
30
.
01)
x
T
T-
T
=
z(0
-
01)x5312 (T)
=
1
2
x0
.
01
x
,
00
-
=Y
=
-

Q
Plate
Se
-
-
stupts-
⑳ T
T
,
x"2
Fas

Qof
-
~
--zuhr
E 3
+
,
(*
=
R
-
6000
T
3
2
3 36000
(Eil()
(sor

=

I
R
-&+
4336000
I
=
&
36000I
=(8
=
Goo
-
R
=
36000

egon

PYQ

Q
-

GRAVITATION
ON PLANET02

GRAVITATION ON
PLANET
Acceleration due to gravity
RM
=
migF
=
E

summt---
·
M2
F
=
GMmiE
>
&

· -
mig
may
R2
Fr
-
Somme
-Mmz
GMM
SR2
&&
-
=
msg
Le
=msg

GRAVITATION ON
PLANET
Acceleration due to gravity
g
isaccdue
0 to
L=BM
geauity
I
-uR-my

·
-
9
ene
①itwillbe
Same
near
earthSurface

aage
-
will
-

willit
never
chy
(g)

G
->
IsConstant
g
->
it
o 5

GRAVITATION ON
PLANET
Acceleration due to gravity
R
:
=
%
g
=

g
=2
2
ng=
-
frig
:
-
g=?
g
:
g
=
q
=
2=

Fation
of
I
~
I
=
am
3 Rp
2
0
①th
O
!
Get
e
②With'd O
Wotation
4
y
O

GRAVITATION ON
PLANET
Acceleration due to gravity
a
-
2g
=
2
=
go()
nR
->
-g
=
Gr(
-
2)
1km
.
-eg
=
?g
=
fr(
-
2)
-
-
&
R
=
6400km
=
9)
=
Gr(1
-
500).
go
x

GRAVITATION ON
PLANET
Acceleration due to gravity

GRAVITATION ON
PLANET
Acceleration due to gravity

q
=
g.(1
-
2)Sa
g
=1
I
E
g
gol
!
640km
=
Gr(1
-
)
g
=
23
=
18

GRAVITATION ON
PLANET
Acceleration due to gravity
g
=
E
=
e
go
=
9.
=
ENSGR


go
*
/
,
-
R
/
->
I-t

gwill


~

& ②h
-
X
W


-

-

GRAVITATION ON
PLANET
Acceleration due to gravity
①g
=
G
=
ISR
kacR

g
=
8 g
=
gr(-
-

gl
=
g(1
-
2)

g
=
gr-wirla

GRAVITATION ON
PLANET
Acceleration due to gravity

to
W↓
&
g
=
g5-
wil
I
G
=
g
.
-
wilas

I
-
-
- -
-
1
=
0
Is
g=
-
gr-w((o)
I
gl
=g
.
-
w
W
I

GRAVITATION ON
PLANET
Acceleration due to gravity

GRAVITATION ON
PLANET
Acceleration due to gravity
&
- -
ja
- -
9
SL
i
gr
=
am
R2
I
8
a

n
=
R
-
g
=
E
·
a go
A
R
-
R
=
R

Q
~
g
=
(π44
--
-
g
=x
2⑧
z
=
1
=
g
=
2y

Q
~
g
=
a
Ag
AMx
-
1
2
-- t
-
g
0
18
=
(
-
1)
-
(
-
1)
x2
-
I
=
-
1
+
2
=
+

Q
·
*
r

MP21R d
1- 1
.g
g
=
a
18
=
AMx)
-
1 x
I
=
(2)
+
(
+
H
-
)x2
=
2
+
2
=
4.1.

M12%
RY
Ht
.
g
=
a=At
,
e
I
-
4.1
Id
by
41

Q
-82 -Im
Re
-
1Rm
-Mm
&
c
=
GMe
qm
=
Ri
-
Re
GMe=
GeRe2
gmxRm
=
GMm=
amm

Q
-

~
*
·

I
=
-
1& 2/ ⑧
go
g=
2
h
=
R(c
-
1)
-
(1
+
2)A
(1
2
=
2
(t)
=

Q
~

.
-
wR
=
0g
=
Go
wR
=
Go
w
=
Go
-
R
w
=
F=
ood
R
w
=
=
=3
800

Q
g
=
gr-w
(W
=
My
=
m(g
--
wiR)
w

GRAVITATION ON
PLANET
Gravitational Field

Interity
the
->
LHollowSphere
Solid
Sphere
I
e
&
&
-
/
a
Fam/
a
/
I
0
-
92
-
In
I
-
En
d
"
-h

GRAVITATION ON
PLANET
Gravitational Field

Q
M

I I
T
*
u I
&
I
-
-
↓I

Me

·

I

Q
-
:

F
=
mT
-
- "¥
=
0
-

⑰g
/
~

GRAVITATION ON
PLANET
Gravitational Potential & Potential Energy
u
-
-
re
V-
GM
-
*
-2
Ex
-Sky
/
& mo
Faxt-
M--
-
-
-
F
0
R
Wext
=
-
105
W
=
-
10
I
V
=
m
=
5
=
-
2Ty

GRAVITATION ON
PLANET
Gravitational Potential & Potential Energy
M-
-
-

2
·
am
=
1
-
R
Mo
R
-mo
=
mov

Q
-
~
~
M
~
--
D
-
I E
m
O &
V
,
Ve
-
&
⑧ &
M
"¥M
KE+
PE
=
0
Ef
qve
-
ve

Q
~
R
=
ut
v
-
)
ar
-
(1
+
RR)
V
=
(1)
:
-
un)
R

·
E4
=
2R
es
V
=
!
-
=
v
I
49R
-

Q
-
-
-
-
-
~
Nega
k
T
-

go
n
=
h
zm=
2
012
2
v2x12
-
290h
-
2x12
=
24m
-
-

Q

GRAVITATION ON
PLANET
ESCAPE VELOCITY OF A BODY
Sumen
Arch
-
GMmo

Ve
U
=-
-
E
mo
RM
R
-
GMm
+Y
=
R
v
=
2 GM
-

C
R

GRAVITATION ON
PLANET
ESCAPE VELOCITY OF A BODY
+ 9
TE
=
Ove

+

-
I
o
-
-
10
I
-
8
KE
>0
-
PECO
TE
=
0"¥IE
=
O4E
=0+
=
0

GRAVITATION ON
PLANET
ESCAPE VELOCITY OF A BODY

Q
- -
-
-
2GM=Ve
v
-
Rve=
-Ve

Q
-

PYQ

Q
-
-
)
I
)-
-
I
R

Q ve-g
-
-
-
X

Q

Q

Q

HOW WE UTILIZE
GRAVITATION
03

HOW WE UTILIZE
GRAVITATION
SATELLITE
~
-
-

-
·
x-
S

HOW WE UTILIZE
GRAVITATION
SATELLITE
-
S
&
vo
-
&

~
-
I
R

I
M
~
-
-
am
-
=
-R

R
v
=
-FR

HOW WE UTILIZE
GRAVITATION
SATELLITE
-
-
ve
mo
-
-
-
!
-KE
=
m
I
-
IKE
=
Go
M
I 24
SLaz
--
I
/
I
Mo
r
/
TE
=
KE
+
PE
-
-
=
Emmo+fami
-
GMmo
=
-
22


v
=
a

=-
0
B
·
-->
O 0
I
~
2

GMmo
So

~
KE
=
It
=
S
PE
= -
Go
--
100
E
-
TE
=
-
GMmo
=
so
-
E2

HOW WE UTILIZE
GRAVITATION
SATELLITE
&
-
24h
-
I
0

Q
v
=--
29MR 2amR
-
X
-

2
R
R--
29R
I
=
r
gr
T
=
r
Ve 29
To
fr

Q
~
S
-
/
-S

Q
-
-
--
--
-
X
Vo
r
-
gR

PYQ

Q
RFz
-
-
- GMmo
-
-
&
-
M

MMezmo
-
-
moXammo
o
m
-
-
- n
-
7
X
&
v
=
rgr
~
Tags