group3ppt-240508074515-Engineering Mathematics II Presentation.pptx

AmolAher20 22 views 21 slides Mar 10, 2025
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

Engineering Mathematics II Presentation


Slide Content

SANJIVANI COLLEGE OF ENGINEERING, KOPARGAON (An autonomous Institute affiliated to SPPU Pune) Engineering Mathematics II Presentation Guided By: Prof. A. S. Aher

1.Solve : = xy+ = xz , y(0)=1, z(0)=2, h=0.2 Find y , z at x=0.2.  

Here, Starting at ( , and taking the step for x,y,z to be respectively the RK method gives   By RK method, =0.2( =0.2(0*1+0) =0 = =0.2(0*2) =  

= ) = =0.2[0.1*1 + =0.2(0.1+0.01) =0.2*0.11 = 0.022 = ) = = ] =0.2(0.1+0.01) =0.2(0.11) = 0.02   = ) = =0.2(0.1*2 =0.2(0.2) = 0.04 = ) = 2.02) =0.2(0.1*2.02) =0.2(0.202) = 0.04  

= ) = = ] =0.2(0.20+0.04) =0.2(0.24) = 0.05 2 + 2 + = 0+2*(0.02)+2*(0.02)+0.05] = k = 0.02 Therefore , at =0 is =1+0.02 and y=1.02   = ) = = ] =0.2(0) =0.2(0.408) = 0.08 u +2 + = 0+2*(0.04)+2*(0.04)+0.08] = u = 0.04 at =0 is z =2+0.04 and z=2.04  

Q.2) Write a computer programming for backward difference formula .

Step 1 - Define a function backward_difference_table(x, y) that takes two arguments, x and y. Step 2 -Calculate the length of y and store it in n. Step 3 - Create a 2D table of size n x n filled with zeros. Step 4 - Initialize the first column of the table with the values of y. Step 5 - Iterate over the remaining columns of the table and calculate the backward differences using the formula table[i][j] = table[i+1][j-1] - table[i][j-1]. Step 6 -Return the table. Step 7 - Define a function newton_backward_interpolation(x, x_values, y_values) that takes three arguments, x, x_values, and y_values. Step 8 - Calculate the length of x_values and store it in n. Step 9 - Calculate the value of h as the difference between the first two values of x_values. Step 10 - Calculate the value of u using the formula u = (x - x_values[n-1]) / h. Step 11 -Calculate the backward difference table using the backward_difference_table function. Step 12 -Initialize the result variable with the value at the bottom of the last column of the table. Algorithm:

Step 13 - Iterate over the remaining columns of the table and calculate the interpolation using the formula result += term, where term is calculated as term *= (u + j) / (j + 1). Step 14 -Return the result. Step 15 -Take user input for x, x_values, and y_values. Step 16 -Calculate and display the backward difference table. Step 17 -Calculate and display the interpolated value at x.

Source Code: def backward_difference_table(x, y): n = len(y) table = [[0 for _ in range(n)] for _ in range(n)] for i in range(n): table[i][0] = y[i] for j in range(1, n): for i in range(n-j): table[i][j] = table[i+1][j-1] - table[i][j-1] return table def newton_backward_interpolation(x, x_values, y_values): n = len(x_values) h = x_values[1] - x_values[0] u = (x - x_values[n-1]) / h table = backward_difference_table(x_values, y_values) result = table[n-1][0]

Source Code: # Taking user input for x, x_values, and y_values x = float(input("Enter the value of x for which you want to find the value: ")) x_values = list(map(float, input("Enter the values of x (space-separated): ").split())) # Calculating and displaying the backward difference table table = backward_difference_table(x_values, y_values) print("Newton's Backward Difference Table:") for row in table: print(row) # Calculating and displaying the final output output = newton_backward_interpolation(x, x_values, y_values) printf("The interpolated value at x = {x} is: {output}")

Output:

Q. 3 ) Using Taylor's series express 2 +5 +6 in powers of (x-1).  

Answer: Here, f(𝑥)= 2𝑥^4+5 𝑥^2+6 f’(𝑥) = 8𝑥^3+10𝑥 f’’(𝑥) =24𝑥^2+10 f’’’(𝑥) =48𝑥 f’’’’(𝑥) =48 f(1)= 2〖(1)〗^4+5〖(1)〗^2+6 =13 f’(1) = 8〖(1)〗^3+10(1) =18 f’’(1) =24〖(1)〗^2+10 =34 f’’’(1) =48(1)=48 f’’’’(1) =48

By Taylors Series: f ( ) ⋯⋯ Compare power = = a f ( ) ⋯⋯ . ……equation(1)  

Put the value in Equation (1) f ( x ) f ( x ) f ( x ) Thus, the Taylor series expansion becomes: f ( x )  

Q.4) Find the center of mass of a thin , uniform plate whose shape is the region between y = cos x and the x - axis between x= ℿ/2 and x = ℿ/2. Since the density is constant , we may take p(x, y)= 1.

It is clear that but for matrics lets compute it First we compute the mass m= 1 dydx = cosxdx= = …   mx= ydydx = . = . My= dydx = x cos x dx=0 So  

                    sin2x     x                                             =       Mx =

=   - [- COSX   = [   = [   = [ 1 - 1 ] + [0 – 0] = 0 My=

References Books: B. S. Grewal, Higher Engineering Mathematics, 42nd ed. Khanna Publishers, 2012. ISBN: 978-8174091154. H. K. Das, Engineering Mathematics. S Chand, 2006. ISBN: 8121905209. G. V. Davis, Numerical Methods in Engineering and Science. Springer, 1986. ISBN: 978-94-011-6958-5. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, Narosa Publishing House, 2014. ISBN: 978-1842653418. N. P. Bali and M. Goyal, A Text Book of Engineering Mathematics, 8th ed. Lakshmi Publications, 2012.ISBN: 978-8131808320. E. Kreyszig, Advanced Engineering Mathematics, 9th ed. Wiley, 2013. ISBN: 978-0471488859. E. B. Staff and A. D. Snider, Fundamentals of Complex Analysis with Application to Engineering and Science, 3rd ed. ISBN: 0139078746. P. Dawkins, Calculus III, Lamar University Texas, 2018. [Online]. Available: http://tutorial.math.lamar.edu . E-Resources https://ocw.mit.edu/courses/18-04-complex-variables-with-applications-spring-2018/pages/lecture-notes/ https://www.codechef.com/ https://www.geeksforgeeks.org/courses?source=google&medium=cpc&device=m&keyword=geeksforgeeks&matchtype=e&campaignid=20039445781&adgroup=147845288105&gad_source=1&gclid=Cj0KCQjwk6SwBhDPARIsAJ59GwegeTJbc6aGJqhfid7xlG892rYiAuuvZwkxULIPbtiDTYADMs8E3FEaAqF5EALw_wcB

Thank You!
Tags