HANDBOOK of MATHEMATICAL FORMULAs (compilation of equations).pdf
samirsinhparmar
113 views
30 slides
Sep 09, 2025
Slide 1 of 30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
About This Presentation
Handbook of math formulas; compilations of mathematical formulas; differentiation formulas; integration formulas; calculus; vectors; limits; fourier transforms; numerical analysis; statistics; random errors; series; matrix algebra; complex variables; differential equations; physical constants; hyper...
Handbook of math formulas; compilations of mathematical formulas; differentiation formulas; integration formulas; calculus; vectors; limits; fourier transforms; numerical analysis; statistics; random errors; series; matrix algebra; complex variables; differential equations; physical constants; hyperbolic functions
Size: 7.85 MB
Language: en
Added: Sep 09, 2025
Slides: 30 pages
Slide Content
MATHEMATICAL FORMULA HANDBOOK
Contents
Introduction
Series
Arähmei and Game progresos Cameron sis, hero a
Tos: Binomial eons Ty
Vector Algebra
Matrix Algebra
Vector Calculus
Noto; Moni; Gi
Complex Variables
nr; De Molo’ then: Pour o
Trigonometric Formulae
Hyperbolic Functions
Limits
Differentiation,
Integration
Stn forms Stor atico; ne
Dine 6 ction Reduction form
Differential Equations
Laplace’ oti
Calculus of Variations
Functions of Several Variables
yor eis ort eras; Samy pons; Changing caries: th chain rae
Changing arabe in surja and ou negras bla
Fourier Series and Transforms
rier ers: Fourier seis fort
Faure sees or and wen nti
ke ers Fore sors
Laplace Transforms.
Numerical Analysis
ing 10 ders; relation: Ener om,
17. Treatment of Random Errors
Statistics
Mean and Vaio Pray distritos Weight
Saisies of date sample Regression (les
10
n
2
13
1
16
7
18
19
»
a
Introduction
Bibliography
brio Nand. aja
Abramowitz, Me Stegun, LA Handbook of Mathematical Functions, Dover, 1965.
GGradshteyn LS. & Ryzhik LM, Table o tra, Series and Products, Academic Pres, 1980
Jahnke, Ee Ede,
Norling Ce Osterman, J, Physics Handbook, Chartwell Brat, Bromley, 1960.
Speigel, MR, Mathematical Handy
(Schaum Outline Sri, MeGr Hi, 1968),
Physical Constants
Based om the “Review of Particle Pr
speed of light in a vacuum
permeability of a vacuum
permittivity of a vacuum
elementary charge
(by definition)
4xx 10-7 Hm! (by definition)
8.854 187 817... x 10
19) x 107% €
6-626 075 5(40) x 107%] 5
¡00% y
"rm!
1.054 572 66(63) x
6.022 136 7(36) x 10
1.660 540 2(10) x 10°
9-109 389 7(54) x 10
1010) x 10°
9.274 015 4(31) x 10
314 510(70) IK! mol"
1-380 658(12) x 10-23 JK!
5.670 51(19) x 1078 wm? Kt
6.672 59(85) x 10-11 Nm? kg
9.806 65 ms"? (standard value at sea level)
1. Series
Arithmetic and Geometric progress
(These results ala old for comple series)
Convergence of series: the ratio test
Convergence of series: the comparison test
each term in a series of positive terms i ess than the corresponding term in series Aou to
then the given seres als convergent
Binomial expansion
If is a postive integer the seres termina
es and valid for all the tem in x ") where °c
a the number of iffrent ways in which an unordered sample ofr objet on be selected from a set of
Taylor and Maclaurin Si
“act Tant Har
valid for a values of
valid oral values
valid for? < x < À
Integer series
En 142494046
Sram. m Mann
[sce expansion often! a]
Enon 2344 mena = MU 2
This ast result sa special case of the more general formula,
En Dr +2) = MACEDO 2) N AN +4 D)
Plane wave expansion
espía) = explitrcoso) = Fiat + tt Peux 0)
she (00) ar Legendre polynomial (os section 11) and (kr) ae spherical Bese functions, define by
2. Vector Algebra
IH, J Kane orthonormal veto and A = Ad + Ayj + A then JA]? = AE + A} + AR [Orthonarmal vectors
Scalar product
AB Alice wher isthe angle between ie vectors
‘Scalar multiplications commutative: AB = BA.
Equation of a line
A point = (x2) les ona ine pasting through point and parle
with Aa rea umber
Equation of a plane
{a)¢-d = dl here dis te normal from the origin othe plane, or
Vector product
Ax B = AI sing, wheredis the angle between th vectors and
Torwhich A, By form righthand st
nit vector normal tothe plane containing
A and Bin the dirt
Vestormoliplicaton not commutative: À X B = Bx A
Scalar triple product
Ac Ay A
Vector triple product
Non-orthogonal basis
Summation convention
3. Matrix Algebra
Unit matrices
zen ix of order men Al = LA = A. Also =1
yj = bj A isa square
Products
cab) = Ea,
Transpose matrices
LEA is mati, then transpose matrix A such hat (A) = (A
Inverse matrices
transpose of cofactor of A
where the cofactor ofA s (1) times the determinant of the matrix A wid the th ow and ith column deleted
Determinants
Al= Ep AAA
‘where the numberof the sue sequal to the order of the matrix
2x2 matrices
was (2 8) sen
Product rules
AB. NINA (individual veses exis)
AB... NI = [Ai (individual matrices are square)
Orthogonal matrices
form
An orthogonal matrix Qs square matix whose colon
maté O
aan ja OF isalso
Solving sets of linear simultaneous equations
AE A is aquar then Ax = has unique solution x= AID A! exist if 1A] #0.
IFA is square then Ax = Ohas a non trivial solution and ony JA =,
Au overconsrsined et of equations Ax = bis one in which A has rows and cola, where {he number
‘of equations) i greater than (ih number of variable. The bes ac x (in Ihe sense hat minimizs the
cor (Ax — ] ithe solution ofthe equations AT Ax = ATE, Ifthe columns ofA are orthonormal vectors then
din components of 4.14 = AT then A is called a
conjugate ofthe corespo tan matrix
Eigenvalues and eigenvectors
The n eigenvalues A and eigenvectors, of an n xn mates Aare the solutions ofthe equation An = Au. T
‘genvales ae the zeros of the polynomial of gree, (A) = [A A IA is Herman then the elgevais
Ware eal and the eigenvectors ae mutually othogonal. [A — A} = Di all Ue characters equation of the
sholAI = TTA
11 Sis symmetric matrix, isthe diagonal matrix whose diagonal elements ar the eigenvalues ofS, and is the
eis whose caus ac the normalized eigenvectors of A then
If xis an approximation o an eigenvector a À then «TA (x) (Rayleigh q
int is an approximation to the
comesponding
Commutators.
Hermitian algebra
| Mat form Operator form Brake
Hermitity wre=tane fuos= fioure 1018)
Oxthogonalty OPEN (DEC
Completeness b= Env) °
Rayleigh-Ritz
Lowest eigenvalue x
Pauli spin matrices
ti dl BS
4, Vector Calculus
¿is ascalar function fast of positon cordinate, In Cartesian condinates
$= Sy.) in cylindrical polar coordinates $ = 6(9,9.2) in spheral
Pola coordinates $ = (70.9); cases with radial symmety 6
Mis veto function whose components are salar functions ol he positon
ar independent funcions of 2
In cartesian coordinates (et) al
endé- VO dwA=V-A culA=VxA
Identities
god +) = grado: + prod Au +A) = WA à di A
srad(dugh) = d1 grados + érgradé
cuna, + Aa) = cue ay + eu A
(HA) = Galva +(gradó)-A, eurl(pA) = peur + (grado)
divlaı x Ar) = Ar curl Ay = A curl
ur(As x As) = Audiv Az = Ardiv A + (ds grad) Ay — (Ay grad)
divicurlA) =0, — curigradg) =0
cul(cue A) = grad A) — div{grad A) = grad(aiv 4) - A
rad Ai» Aa) = Au x (cue As) + (As grad) As + A2 x (Cu A) + (Ar
Grad, Div, Curl and the Laplacian
Gradient vo
Transformation of integrals
L= the distance along some curve’ in space and is measured fom some fixed point
a volume specifi surfce
7 = the unit tangent to Ca the point P
AL = the vector element of curve (= FL)
INES
When 5 defines a lose region having a volume +
AS
[cora fous fivxae
osx ay-as= [aa
ax v9) as [oan
[ove-as= [v(wve
[were + (wo) «ve)) ar
[ore-or
#9) as
5. Complex Variables
Complex numbers
The complex number 2 = x
real quantity rs the modulus
De Moivre’s theorem
Power series for complex variables
This ast eres converges both on and within he ice
This ast series converges both on and within he ce
angle the argumento
1 exept atthe pint:
ceaceptat the points
cept at the point
The complex conjugate of zis "= ti
convergent for a rite
1
6. Trigonometric Formulae
Arial Au At
sin(A£D) = sinAcosB ¿cosAsinE cosa
cos(A 28) = cos AmsBrsindsind — sinAsind
Relat
‚ns between sides and angles of any plane triangle
scribed cre
sind JO. wheres
Relations between sides and angles of any spherical triangle
7. Hyperbolic Functions
= Forlage negative
Relations of the functions
sinh = —sioh(-a sechx sena
oh cost cosecha = —cosech(—»
hy o Ztani(a/2) tam ooh = Lan 6/2
Tan O72)” Yat ium?) ere
tanh = 4/1 seen sechx = tax
12/2) I osh(x/2) = ¡SER
5 tanh(2e) = Hats
22) = costa 114 2sinhty
8. Limits
9. Differentiation
10. Integration
Standard forms
fra teen #21
Jia mese finxaz =xins
ax = le [retó er (Eh) +e
sinrar= (in 3) +
/
/
/
/
Zand even
Land
fumar =o
feras =smx+e
“franhx dx = t(coshs
come x= In tan
fueras =Ingecr+uns) +¢ fans =2un He
foods nz fear = int) +6
nd mis einer
1 expresedin hre-dimensionul pola coordinates (ee section 42 solution is
Where adm are intgers with > Im| > 0, B,C, Dar constants
cos) = sino [E] rican
trical polar cooninates (se section) sation
Spherical harmonics
Then
zed solutions 0,0)
2),
the quato
wenn en sens E eee
un Ev yr Eno eto
12. Calculus of Variations
5 al
The condition for 1 = | F(y. y) dto have a stationary values
Euler Lagrange equation.
rere y
13. Functions of Several Variables
140 fi.) thon 2 np frein wih rpet ing costat
vom Mars Bays Mast. and so Bors Moy à
wher a independent variables. 22 o weten at (22) or 2] when the vais kept
constant need to be stated expicily
lisa ell behaved function then
19 = soy
a (2) (à) (à)
()
Taylor series for two variables
LE) well behaved inthe vi
sit) evn (ne)
wheres = a+ ny = 04 vand diferenciarlo, y =8
Stationary points
anti 6 = f(y) story pont when DE 38 = 0, at 28 28 28. o toto
Changing variables: the chain rule
no und variables, y... ae facina of independent variables, de
Changing variables in surface and volume integrals - Jacobians
[10.9 4xdy= [sus dudo where J
The Jacobian also writen as À
af du de de where now J
14. Fourier Series and Transforms
as M M oo forall points where yx) continuous
Fourier series for other ranges
Variable t range 0 < fT function of ine with period frequency wo = 25/7).
re, the probably that Xx, le We the distribution s continuous the probability that X hes in an
interval x (2), where (3) 1 he probability density function.
Mean = E08) = Ermor fx f(s) dx.
X= Eu = Por fe wf) de
Probability distributions
a fe ep E
Weighted sums of random variables
LÉ = aX +BY then EU) = EUX) + BE(Y)- X an are independent then VI) = 2V(X) + VL
Statistics of a data sample x1...
Sample meant = À Ex
Sinn? (11%)
Regression (least squares fitting)
of points (x.y, model the observations by y = a à Blas =) +6