Energy Balance
•ForaslabofvolumeWHΔx:
Heat entering at x = q
x|
xWH
Heat leaving at x + Δx = q
x|
x+Δx WH
6
Energy Balance
•For Region 01:
q
x|
xWH-q
x|
x+Δx WH = 0
•Dividing by WHΔx:
•Taking limit Δx→0,
7
Integration
•Integratingthepreviousequation:
•q
o=Heatfluxattheplanex=x
o
•Similarly,forregions12and23:
•Withcontinuityconditionsonq
xatinterfaces,sothattheheatflux
isconstantandthesameforallthreeslabs
8
Applying Fourier’s Law
•Region 01:
•Region 12:
•Region 23:
9
Integration over the entire thickness
•Wenowassumethatk
o1,k
12,andk
23,areconstants.Thenwe
integrateeachequationovertheentirethicknessoftherelevantslab
ofmaterialtoget
•Region01:
•Region12:
(Eq-1)
(Eq-2)
10
Integration over the entire thickness
•Region 23:
•In addition we have the two statements regarding the heat transfer
at the surfaces according to Newton's law of cooling
•At Surface 0:
•At Surface 3:
(Eq-3)
(Eq-4)
(Eq-5)
11
Simplification
•Adding Eq-1 through Eq-5
12
Final Expression
13
General Expression
•SometimesthisresultisrewritteninaformreminiscentofNewton'slawof
cooling,eitherintermsoftheheatfluxq
o(J/m
2
-s)ortheheatflowQ
o
(J/s):
•ThequantityU,calledthe"overallheattransfercoefficient,"isgiven
thenbythefollowingfamousformulaforthe"additivityofresistances“
•Herewehavegeneralizedtheformulatoasystemwithnslabsofmaterial
14