Historia del microscopio

shuracap 8,760 views 40 slides Oct 31, 2013
Slide 1
Slide 1 of 40
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40

About This Presentation

No description available for this slideshow.


Slide Content

HISTORIA DEL MICROSCOPIO EFREN ALEJANDRO VAZQUEZ VAZQUEZ 3 «B» AURELIA ROSTRO RAMIREZ BIOLOGIA l 16-OCTUBRE-2013

El microscopio (de micro-, pequeño, y scopio, observar) es un instrumento que permite observar objetos que son demasiado pequeños para ser vistos a simple vista . En un principio eran simplemente un tubo de 45 cm de largo y 5 cm de diámetro con una lente convexa en cada extremo. Este instrumento llegó a tener entre 3 y 9 aumentos. MICROSCOPIO

Zacharias Janssen nació en Middelburg, en los Países Bajos, en 1588 y murió en esa misma ciudad en 1638.Provenía de una familia que fabricaba lentes. Se le considera como el inventor del microscopio compuesto (con dos lentes), tal vez con la ayuda de su padre lo invento , en el año 1595.También invento el telescopio. CREADOR DEL MICROSCOPIO

Microscopio óptico Un microscopio óptico es un microscopio basado en lentes ópticos. También se le conoce como microscopio de luz, (que utiliza luz o "fotones") o microscopio de campo claro. El desarrollo de este aparato suele asociarse con los trabajos de Antón van Leeuwenhoek.

Microscopio óptico. Descripción :A) ocular, B) objetivo, C) portador del objeto, D) lentes de la iluminación, E) sujeción del objeto, F) espejo de la iluminación.

El objeto a observar se coloca entre el foco y la superficie de la lente, lo que determina la formación de una imagen virtual, con una ampliación de hasta 300 veces; gracias a ellos Leeuwenhoek fue capaz incluso de describir por primera vez las bacterias. Microscopio simple

Microscopio simple

Un microscopio compuesto tiene más de una lente objetiva. Los microscopios compuestos se utilizan especialmente para examinar objetos transparentes, o cortados en láminas tan finas que se transparentan. Se emplea para aumentar o ampliar las imágenes de objetos y organismos no visibles a simple vista. Microscopio compuesto

Microscopio compuesto

composición • El sistema mecánico está constituido por una palanca que sirve para sostener, elevar y detener los instrumentos a observar. • El sistema de iluminación comprende un conjunto de instrumentos, dispuestos de tal manera que producen las ranuras de luz. • El sistema óptico comprende las partes del microscopio que permiten un aumento de los objetos que se pretenden observar mediante filtros llamados "de anti gel subsecuente".

L os objetos son iluminados por rayos de una determinada longitud de onda. La imagen observada es el resultado de la radiación electromagnética emitida por las moléculas. se produce cuando un electrón de un átomo absorbe toda la energía de una determinada longitud de onda de la luz, saltando a otros orbitales Microscopio de fluorescencia

Microscopio de fluorescencia

E s un microscopio óptico al que se le han añadido dos polarizadores. El material que se usa para los polarizadores son prismas de Nicol o prismas de Glan-Thompson, que dejan pasar únicamente la luz que vibra en un único plano Este tipo de microscopio se usa para poder identificar sustancias cristalinas (minerales) o fibrosas (como el cito esqueleto), sustancia amiloideo, asbesto, colágeno, cristales de uratos, queratina, sílice, polen, etc. Microscopio petrográfico

MICROSCOPIO PETROGRAFICO vitamina B6

Microscopio electrónico Utiliza electrones en lugar de fotones o luz visible para formar imágenes de objetos diminutos. Los microscopios electrónicos permiten alcanzar ampliaciones hasta 5000 veces más potentes que los mejores microscopios ópticos". El primer microscopio electrónico fue diseñado por Ernst Ruska y Max Knoll entre 1925 y 1930.

Microscopio electrónico

Microscopio electrónico de barrido Es aquel que utiliza un haz de electrones en lugar de un haz de luz para formar una imagen. En el microscopio electrónico de barrido la muestra generalmente es recubierta con una capa de carbono o una capa delgada de un metal como el oro para darle propiedades conductoras a la muestra. Su resolución está entre 4 y 20 nm, dependiendo del microscopio. Fue inventado en 1937 por Manfred von Ardenne. Permite obtener imágenes de gran resolución en materiales pétreos, metálicos y orgánicos

Microscopio electrónico de barrido

Microscopio de luz ultravioleta Depende de la absorción de esa luz por las moléculas de la muestra. La fuente de luz ultravioleta tiene una longitud de onda de 200 nm. La muestra no se puede observar directamente a través del ocular porque la luz ultravioleta puede dañar la retina. El método sirve para detectar ácidos nucleicos, proteínas que contienen determinados aminoácidos. Puede cuantificar el ADN y el ARN de cada célula. Fue creado por Sebastián días en 1954

Microscopio de luz ultravioleta

El microscopio de campo oscuro utiliza un haz enfocado de luz muy. El objeto iluminado dispersa la luz y se hace así visible contra el fondo oscuro que tiene detrás, El empleo de uno u otro es indistinto, mediante cualquiera de ambos, la luz no incide directamente en el objetivo (este es el objetivo de estos condensadores), sino que incide con una apertura numérica mayor al del objetivo. Microscopio de campo oscuro

Microscopio de campo oscuro

El microscopio de contraste de fases permite observar células sin colorear y resulta especialmente útil para ver células. La luz que pasa por regiones de mayor índice de refracción experimenta una deflexión y queda fuera de fase con respecto al haz principal de ondas de luz que pasaron la muestra. Su inventor fue el físico neerlandés Frits Zernike que junto al método de contraste de fases le valió para ganar el Premio Nobel de Física en 1953. Microscópio de contraste de fases

Microscópio de contraste de fases

Emplea una técnica óptica de imagen para incrementar el contraste y/o reconstruir imágenes tridimensionales utilizando un "pinhole" espacial (colimador de orificio delimitante) para eliminar la luz desenfocada o destellos de la lente en especímenes que son más gruesos que el plano focal. Se aplica típicamente en las ciencias biológicas y en la inspección de semiconductores. Microscopio confocal

Microscopio confocal

Un microscopio electrónico de transmisión , es un microscopio que utiliza un haz de electrones para visualizar un objeto. Lo característico de este microscopio es el uso de una muestra ultrafina y que la imagen se obtenga de los electrones que atraviesan la muestra . Los microscopios electrónicos de transmisión pueden aumentar un objeto hasta un millón de veces La principal función del microscopio electrónico de transmisión es estudio de los metales y minerales y el estudio de las células a nivel molecular. Microscopio electrónico de transmisión

Microscopio electrónico de transmisión

El microscopio de iones en campo es una variedad de microscopio que puede ser usado para visualizar la ordenación de los átomos que forman la superficie de la punta afilada de una aguja de metal. Fue la primera técnica con la que se consiguió resolver espacialmente átomos individuales. La técnica fue desarrollada por Erwin Müller. En 1951 se publicaron por primera vez imágenes de estructuras atómicas de tungsteno. Microscopio de iones en campo

Microscopio de iones en campo cátodo de tungsteno.

Un microscopio de sonda de barrido (también llamado SPM por sus siglas en inglés Scanning Probe Microscopy) es aquel que tiene el transmisor en la parte exequimal del lente (Objetivo 4x). Este microscopio electrónico utiliza una sonda que recorre la superficie del objeto a estudiar. Su uso en investigaciones científicas es el de regular la imagen mediante un barrido de electrones haciendo que la imagen aumente (10.000.000 nm). Microscopio de sonda de barrido

Microscopio de sonda de barrido

Microscopio de efecto túnel Un microscopio de efecto túnel es un instrumento para tomar imágenes de superficies a nivel atómico. Su desarrollo en 1981 hizo ganar a sus inventores, Gerd Binnig y Heinrich Rohrer , el Premio Nobel de Física en 1986. Para un STM, se considera que una buena resolución es 0.1 nm de resolución lateral y 0.01 nm de resolución de profundidad. Con esta resolución, los átomos individuales dentro de los materiales son rutinariamente visualizados

Microscopio de efecto túnel

Microscopio de efecto túnel Oro Nanotubo de carbono

Es un instrumento mecano-óptico capaz de detectar fuerzas del orden de los nanonewtons. Al rastrear una muestra, es capaz de registrar continuamente su topografía mediante una sonda o punta afilada de forma piramidal o cónica. La sonda va acoplada a un listón o palanca microscópica muy flexible de sólo unos 200 µm. El microscopio de fuerza atómica ha sido esencial en el desarrollo de la nanotecnología Microscopio de fuerza atómica

Microscopio de fuerza atómica

Microscopío virtual Mediante un microscopio virtual, una persona localizada en cualquier lugar del mundo controlará el área de estudio del preparado microscópico (lámina virtual), y analizará los tejidos o células en el aumento que desee.Un microscopio virtual puede ser estático o dinámico: estático es cuando una imagen se encuentra previamente digitalizada a un aumento determinado (20x, 50x, 100x).

Microscopío virtual histológica humana de mama
Tags