IMPLANTS-Biomechanics.ppt

991 views 96 slides Aug 15, 2023
Slide 1
Slide 1 of 96
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96

About This Presentation

perio


Slide Content

RUBINA IBRAHIM
II Year PG Student
Department of Prosthodontia

Definition
Processofanalysisanddeterminationofloadingand
deformationofboneinabiologicalsystem.
Role
Natural tooth and implants anchored differently in bone
The loading of teeth, implant and peri implant bone of prosthetic
superstructure
Optimize the clinical implant therapy

Types
 Reactive
 Therapeutic
ReactiveBiomechanics
Anyprosthesisthatincreasesimplantloading.

Therapeutic Biomechanics
Processofremediatingeachbiomechanicalfactorinorderto
deiminishimplantoverlaoding

Interrelated Factors
Analyzedduringdiagnosisandtreatmentplanningand
maintainedinastateofequilibrium.
 Biomechanics
 Occlusion
 Esthetics

Methods of Analysis
Finite element analysis –Siegele 1989, Chelland 1991
Determinedthedistributionandconcentrationofstrainand
deformationwithinimplantandstatedthatforcedistributionto
surroundingboneoccursatcrestalboneandlevelofthirdscrew
thread.

Birefringence Analysis
Done on plastic model utilizing polarized monochromatic light.
Load Measurement : Lundreg 1989, Montag 1991
PrecisedataaboutforcesexertedonImplanttosupporting
bone.
Complicated -invivo Invitro-valuable
Bond strength between implant and bone : Schmitz 1991
Done it by test of shearing, expulsion and torsion.

FORCE
Definition
Anyapplicationofenergy,eitherinternalorexternaltoa
structure,thatwhichinitiates,changesorarrestsmotion.
RelatedFactors
 Magnitude
 Duration
 Type
 Direction
 Magnification

Magnitude
Anatomicregionandstateofdentition.
Craig,1980
Molar - 390–880N
Canine - 453N
Incisor - 222N
Parafunction- 1000Psi
Colaizzi,1984
Completedenture- 77–196N
Carlsson&Haraldson,1985
Denturewithimplant- 48–412N

Duration
Mastication- 9mt/daywith20to30psi
Swallowing- 20mt/daywith3to5psi
Type
Compressive,TensileandShear
Cowin1989
Bone- Strongest-Compression
- 30%weaker-tension
- 65%weakest–shear
Compressiveforce- Maintainintegrity
Tensileandshear- Disruptsintegrity

Direction
On centric vertical contact
Angleload Axialload
Greatertensile&shearstress Greatercompressive
stress
Misch1994
30%offsetload–Decreasescompressivestrength–11%
-Decreasestensilestrength–25%

Magnifying Factors
Applied Load Torque
Includes,
Extreme angulation
Cantilevers
Crown height
Parafunction
Bone density
Crown height -Increase in 1mm –20% increase in torque.
With same load,
D1 Bone - Accommodate
D4 Bone - Cannot accommodate

Torque / Moment Load / Bending Load
Productofinclinedresultantlineofforceanddistancefrom
centerofrotation.
Torque = ForcexDistance
Naturaltooth- Apical1/3
rd
Chelland,1991
Implant-Firstthirdscrewlevel.
Force
 Vertical-towardssupportingbone
 Lateral-awaysupportingbone–Createsleverarm-
torque

FORCE DISTRIBUTION
Chelland1991, Weinberg,1994
Reiger1990 Implant
Naturalteeth Rigidlyfixed
Periodontalligament Stiff
Flexion Concentratesatcrestalbone
Evenforcedistribution &1
st
3threadlevel
Increase
Rootlength–increaseinsurfacearea-betterforcedistribution.
Implantlength–Initialmobilization
&

FORCE DISTRIBUTION PRINCIPLES
SystemComponents
 Verticalelement–toothorimplant
 Connectingelement
 Supportingmedium–periodontalligamentorbone

FlexibleMedium

StiffMedium

FlexibleandStiffMedium

DIFFERENTIAL MOBILITY
Qualitativedifferencebetweentheflexionofperiodontal
ligamentandstiffnessofosseointegration.
Micromovement
Naturalteethwithgoodbone
Willmovelaterallyapproximately0.5mm
Measuredocclusally.
MicronMovement–Weinberg,Rangert,1994
Implantcanmovelaterally0.1mmorlessmeasured
occlusally.

NaturalTeeth Implant
Periodontalligament-flexion Rigidlyfixed–stiff
Evenforcedistribution Concentrationatcrestalbone
0.5µmmovement 0.1µmmovement
Shockabsorber Rigid
Reducesthemagnitudeof Increasesthemagnitude
stress
Occlusaltrauma– Nosuchwarningsignsonly
Signsofcoldsensitivity, bonemicrofracture
Wearfacets,Pits,Driftaway
&mobility

Elastic modiolus similar to bone 5-10times different
Therefore, with same load
Increase stress,
concentrates at crestal
bone
Surrounding bone formed childhood Forms rapid and intense
Lateral force –exert Lateral force exert
Movement No movement
Dissipates to apex Concentrates at crestal
bone

Forces acting on Implants
 Occlusal loads during function
 Para functional habits
Passive Loads
 Mandibular flexure
 Contactwithfirststagecoverscrewandsecondstage
permucosalextension.
 Perioral forces
 Non –passive prosthesis.

TRAUMATIC FORCES OR IMPLANT OVER LOADING
 Non passive prosthesis
 Parafunction
 Initial contact during maximum intercuspation
 Labial stresses generated during eccentric movements.
Therefore,
 Eliminateposteriorcontactduringprotrusionandlateral
excursion.
 Prosthesiscomeincontactonlyduringintercuspation.

FORCE DISTRIBUTION IN MULTIPLE IMPLANT PROSTHESIS
Splinting
Natural tooth –Periodontal ligament –forced distribution
Implant –stiff –no force distribution and only concentration at
crestal bone

FORCE DISTRIBUTION IN COMBINED PROSTHESIS
 Supported by both natural teeth and implants
 Mode of attachment
 Flexible
 Stiff
 Flexible –internal attachment
 Stiff –when terminal abutments are implants

FLEXIBLE ATTACHMENT
 Tooth supported prosthesis –Female attachment
 Implant supported prosthesis –Screw retained
Flexion Occurs
Not Deleterious

STIFF ATTACHMENT
 Naturaltooth–permanentlycementedsubstructure
telescopiccrown
 Implantsupportedprosthesis–overcrown,copingwith
temporarycement
Tend to Loosen
To eliminate, permanent cementation rather than fixed retrievability

DIAGNOSTIC FACTORS IN COMBINED PROSTHESIS
StandardProsthesisdesign
Internal attachment placed in distal of natural tooth
Differential mobility
Natural tooth cannot support implant
Increase in lever arm
Increase Torque

RecommendedProsthesisDesign
One cantilever pontic from each segment
Flexible internal attachment
Drifting apart of segment
Decreased Torque

FOUR CLINICAL VARIANT WITH IMPLANT LOADING
Includes
 Cuspalinclination
 Implantinclination
 HorizontalImplantOffset
 ApicalImplantOffset

CuspalInclination
Increasein10°increased30%torque
ImplantInclination
Increasein10°Increased5%torque

HorizontalImplantOffset
Increasein1mmincreased15%torque
ApicalImplantOffset
Increasein1mmIncreased5%torque

StaggeredImplantOffset–Rangert1993
Staggered buccal and lingual offset
Tripod Effect
Compensates torque
Implantplaced1.5mmbucalandlingualfromcentrelineto
achieveTripodism.

Weinberg1996
Inmaxilla,lingualoffset-increased24%torque
Buccaloffset-Decrease24%torque
Maxilla - Tripod–increasein24%torque
Mandibular- Tripodism
Maxilla - Asfarasbucally

Weinberg,1996
Inposteriorworkingside,occlusion.Producesbuccally
inclinedresultantlineofforceonmaxillaandlinguallyinclined
resultantlineofforceonmandible.
Reduces 73% of torque in mandible

THERAPEUTIC BIOMECHANICS
 Decreasecuspalinclination
Itreducesthedistancebetweenimplantandresultantlineof
force.

 Crossocclusion
Buccolingualrelationcrossocclusion
Reduces horizontal implant offset
Reduces torque

 ImplantPosition
Implantheadasclosetocenterlineofrestoration–
Reduceshorizontaloffset.

PHYSIOLOGIC VARIATION –CENTRIC RELATION
Kantor,Calagna,Calenza,1973.
Centricrelationrecordshowphysiologicvariationof±
0.4mm
Weinberg1998
Occlusal anatomy modified to 1.5mm horizontal fossa
Produce vertical resultant line of force within expected range of
physiologic variation.

 AnteriorVerticalOverlap
Steepverticaloverlap Lesssteep
ExtremeTorque LessTorque

BIOMECHANICS AND RESORPTION PATTERN
PosteriorMandible
Boneresorbsalongrootinclination
Therefore,posteriormandible–boneresorblingually
ReactivelyBiomechancis
Lingualpositionofrestoration+
Buccalimplantplacement-increasedtorque

 Therapeutically
Canbedoneby
 Reducedcuspinclination
 Implantheadclosetocentrelineofrestoration
 Angulatedabutment-parallelism

 PosteriorMaxilla
Reactively
 Restrictedmaxilla
 Locationofsinus
 Buccalcorticalplatefracture
 Unfavourablebiomechanics

Therapeutically
 Cuspalinclination–reduce
 Headofimplantclosetocenterofrestoration
 Angled/custom–reangulatedabutment
 Crossocclusion
 1.5mmhorizontalfossa.

AnteriorMaxilla
Reactively
Esthetically- LabiallyProclined
- Steepverticaloverlap

Therapeutically
 Lingualhorizontalstop–redirecttheforceasverticallyas
possible.
 Angledabutment
 Implantheadclosetocenterofrestoration

COMPLETE EDENTULISM AND BIOMECHANICS
 Screwlooseningnotcommonthesepatients
Implant placed across and around arch
Cross splinting
Lateral forces –Vertical force
Tripodism
Excellent resistance to bending

WIDER IMPLANTS
Developed by Dr.Burton Langer
Advantages
 Increaseinsurfacearea
 Limitedboneheight
 Uponremovaloffailedstandardsizeimplant
 Widerimplant - Abutmentscrew2.5mm-
Largersize–tighterjoint–
overallstrengthincreases

BONE DENSITY AND BIOMECHANICS
Density ∞ Strength
∞ Amountofcontactwithimplant
∞ Distributionanddissipationofforce
Misch1995
 FEMstudy–stresscontourisdifferentforeachbone
density.
Withsameload
D1 - Crestalstressandlessermagnitude
D2 - Greatercrestalstressandalongimplantbody
D4 - Greateststressandfartherapically

BONE DENSITY AND TREATMENT PLAN MODIFIER
 Prostheticfactors
 Implantnumber
 Implant–Macrogeometry
 Implant–Design
 Coating
 Progressiveloading

PROSTHETIC FACTOR
Asdensitydecreases,biomechanicalloadshouldalso
decreased
 Shortenedcantileverlength
 Narrowoclusaltable
 Offsetloadminimized
 RP
4>FP
1,FP
2,FP
3,removalatnight
 RP
5–forcesharedbysofttissue
 Forcedirectedalonglongaxisofimplant

ImplantNumber
IncreaseinnumberIncreaseinfunctionalloadingarea
ImplantMacrogeometry
Length
 D1 - 10mm
 D2 - 12mm
 D3 - 14mmwithV-shapedthreadscrew
DensitydecreasedLengthincreased

Width
 Increaseinwidth–increaseinsurfacearea
 1mmincreases30%increaseinsurfacearea
 D3&D4widerimplants
ImplantDesign
 Smoothcylindricalimplant–shearforceatInterface–
CoatingwithHA/Titanium
 Titaniumalloy(Ti-6Al-4V)exhibitbestbiomechanical,
biocompatible,corrosionresistance.
Coating
 Increasedbonecontactarea
 Increasedsurfacearea

ProgressiveLoading
Misch1990
Gradualincreaseinocclusalloadseparatedbyatime
intervaltoallowbonetoaccommodate.
Softertheboneincreaseinprogressiveloadingperiod.
Protocol
Includes,
 Time
 Diet
 OcclusalContacts
 ProsthesisDesign

Time
Twosurgicalappointmentsbetweeninitialimplantplacement
andstageIIuncoverymayvaryondensity.
 D1 - 5Months
 D2 - 4Months
 D3 - 6Months
 D4 - 8Months
Diet
 Limitedtosoftdiet–10pounds
 Initialdeliveryoffinalprosthesis-21pounds

OcclusalMaterial
Initialstep–noocclusalmaterialplacedoverimplant
Provisional–Acrylic–lowerimpactforce
Final-Metal/Porcelain
Occlusion
 Initial - Nooclusalcontact
 Provisional- Outofocclusion
 Final - Atocclusion

ProsthesisDesign
Firsttransititional–Noocclusalcontact
Nocantilever
Secondtransititional-Occlusalcontact
withnocantilever
Finalrestoration-Fineocclusaltableandcantilever

SINGLE TOOTH IMPLANT AND BIOMECHANICS
 Requiresgoodbonesupport
 Controlofocclusalleverparalleltolongaxis
 Accessfororalhygiene

When space exceeds 12mm
When space less than 12mm

When space exceeds 8mm with limited width
Should not be placed off center

Posterior Triangular Zone
 Activezone
 Occlusalloadingparalleltolongaxis

Cantilever Prosthesis and Biomechanics
 Itresultingreatertorquewithdistalabutmentasfulcrum.
 MaybecomparedwithClassIleverarm.
 Mayextendanteriorthanposteriortoreducetheamountof
force
Itdependsonstressfactors
 Parafunction
 Crownheight
 Impactwidth
 ImplantNumber

Archform
English1993–APSpread
 Cantileverlength=APspreadx2.5
 Tapering - canineandposteriorimplantswith
anteriorcantilever
 Square - Anteriorimplantwithposterior
cantilever

TaperingOvoidSquare
LessdenseboneAnteriorcantileverwithprosthesisDistal
implants,placedtoincreaseAP-spread.
Maxilla-moreimplantsrequiredthanmandible

 Sufficientboneheightexisttoplacelongimplant,
 Avoidcontactoncentralincisorsduringprotrusion,labial
excursionandmaximumintercuspation
CANTILEVER FIXED PARTIAL DENTURE

 Groupfunction-lateralmovement
 Avoidloadingoncanine
 Lateralguidanceprovidedbycentralandlateralincisor

Twoimplantsupportingafirstmolarand2
nd
premolarwith
1
st
premolarcantileverActivecuspeliminatedcaninepalatal
structures.

Threeimplantsplacedwith Twoimplantsrisky
2
nd
premolarascantilever and/orcontraindicated

MANDIBULAR FLEXURE
Picton1962
 Statedthatmandibularmovetowardsmidlineonopening
Becauseofexternalpterygoidmuscleonramusofmandible
 Medialmovementoccurdistaltomentalforamenand
increasesasitapproachesramus.
James1980&Burch1982
 Movement - 0.8mm - 1
st
molar
1.5mm - Ramusarea

FLEXION
Implant - Naturalteeth - mandible
0.1mm 0.5mm 10to20times
CompletecrossarchsplintingofposteriormolarMandibleflexion
Lateralforce
 Bonelossaroundimplant
 Lossofimplantfixation
 Materialfracture
 Unretainedrestoration
 Discomfortonopenings

FATIGUE FAILURE
Characterised by dynamic cyclic loadind
Depends on–biomaterial
geometry
force magnitude
number of cycles

Biomaterial
Stress level below which an implant biomaterial can be
loaded indefinitely is referred as endurance limit.
Ti alloy exhibits high endurance limit
Number of cycles
Loading cycles should be reduced
To eliminate parafunctional habit
To reduce occlusal contacts

Implant geometry
Resist bending & torsional load
Related to metal thickness
2 times thicker –16 times stronger
Force magnitude
Arch position( higher in posterior & anterior)
Eliminate torque
Increase in surface area

IMPLANT DESIGN & BIOMECHANICS
Ti alloy offers best biomechanical strength & biocompatability
Bending fracture resistance factor
Wall thickness = (outer radius)4_ (inner radius)4
If outer diameter increases by 1mm & inner diameter unchanged
33% increase in bending fracture resistance
If inner diameter decreases by 1mm & outer diameter unchanged
20% increase in bending fracture resistance

Thread pitch Thread depth

Depth–distance between major & minor diameter of thread

Implant macrogeometry
Smooth sided cylindrical implants –subjected to shear
forces
Smooth sided tapered implants –places compressive
load at interface
Greater the taper –greater the compressive load delivery
Taper cannot be greater than 30 degree
Implant width
Increase in implant width –increases functional surface
area of implant
Increase in 1mm width –increase in 33% of functional
surface area

Implant length
Increase in length –Bicortical stabilisation
Maximum stress generated by lateral load can be dissipated by
Implants in the range of 10-15mm
Softer the bone –greater length or width
Sinus grafting & nerve re-posititioning to place greater implant length
Resistance to lateral loading

Crestal module design
Smooth parallel sided crest –shear stess
Angled crest module less than 20 degree-
-Increase in bone contact area
-Beneficial compressive load
Larger diameter than outer thread diameter
-Prevents bacterial ingress
-Initial stability
-Increase in surface area

Larger diameter & angulated crestal module design

Surface Coating
-Titanium plasma spray
-Hydoxyapatite coating
Advantages
-Increase in surface area
-Roughness for initial stability
-Stronger bone –implant interface
Disadvantages
-Flaking and scaling upon insertion
-Plaque retention
-Nidus for infection
-Increased cost

IMPLANT PROTECTED OCCLUSION
Occlusal load transferred within physiologic limit
Misch,1993
width of occlusal table directlyrelated to implantwidth
Narrow occlusal table with reduced buccal contour permits
sulcular oral hygiene
Restoring occlusal anatomy of natural tooth
-offset load
-complicated home care

Narrow occlusal table + reduced
Buccal contour permits oral hygiene,
Axial loading & reduces fracture
Posterior crest of maxilla medial to
Mandibular crest

Apical Design
Round cross-section do not resist torsional load
Incorporation of anti –rotational feature
-Vent\hole-bone grow the hole
-resist torsion
-Flat side\groove-bone grow against
-places bone in compression

Maxillary lingual cusp & contour reduced
Reduce offset load from opposing natural tooth
Mandibular buccal cusp -in width & height

Occlusal material
Porcelain,resin,gold
Porcelain -esthetics, chewing efficiency
Gold -Impact force,chewing efficiency,fracture
resistance,wear,interarch space,accuracy
Acrylic -Esthetics , impact force,static load

IMPLANT ORAL REHABILITATION
Constitutes
Muscle relaxation
Absence of articular inflammation
Stable condylar position
Creating organic occlusion
Absence of pain in stomatognathic system

Organic occlusion components
Correct vertical dimension
Maximum intercuspation in centric relation
Adequate incisal & condylar guidance
Stable bilateral posterior occlusal relation in equilibrium with
long axis of implant
Absence of prematurities
Absence of interferences in eccentric movements

Bruxism patients
Education & informed consent to gain co-operation in
eliminating parafunction
Use of night guard
-anterior guided disooclusion
-posterior cantilever out of occlusion
-soft night guard releived over
implant
Soft tissue supported prosthesis
-soft tissue tend to early load the
implant & hence relieved over it
Removable partial denture over healing abutment
-6mm hole diameter through metal is
prepared

Final prosthesis
-narrow occlusal table
-centric occlusal contact aligned parallel to long axis
Important criteria
-additional implant
-greater diameter implant

CONCLUSION
Biomechanics is one of the most important consideration
affecting design of the framework for an implant bone
prosthesis.It must be analysised during diagnosis &
treatment planning as it may influence the decision
making process which ultimately reflect on the longevity of
implant supported prosthesis

Bibliography
Implant & restorative dentistry-Martin Dunitz
Atlas of tooth & implant supported prosthesis-Lawrence A.
Weinberg
Atlas of oral implantology-A.Norman Cranin
Contemprorary implant dentistry –Carl Misch
Branemark implant system-John Beumer
ITI dental implants-Thomas G.Wilson
Implant prosthodontics-Fredrickson
Dental implants-Winkelmann
Oral rehabilitation with implant supported prosthesis
-Vincente