In mathematics, a complex variable opens a doorway

BiswajitRath23 13 views 24 slides Jul 05, 2024
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

In mathematics, a complex variable opens a doorway to a fascinating world where numbers are more than just points on a plane. A complex variable, often denoted by \(z,\), combines a real part and an imaginary part, written as \(z=x+iy.\) Here, \(x\) is the real part, and \(y\) is the imaginary part...


Slide Content

Complex Numbers10.7
1.Write imaginary numbers using i.
2.Perform arithmetic operations with complex numbers.
3.Raise ito powers.

Imaginary unit:
Imaginary number: A number that can be expressed
in the form bi, where bis a real number and i is the
imaginary unit.i3 i9 i
5
2 1i 1
2
i

16 21 32 1 16   4i 4i 1 21   21i 1 32   16 2i 42i 1
1
2


i
i

Complex number: A number that can be expressed in
the form a+ bi, where aand bare real numbers and i
is the imaginary unit.i34 i57 i
5
4
3
2

Examples:

Complex Numbers: a + bi
b = 0: Real numbers
a = 0: Imaginary numbers
real imaginary

Add Complex Numbers  ii 5435  1
1
2


i
i ii 5435 
Add the real parts –add the imaginary partsi89

Subtract Complex Numbers  ii 2138  1
1
2


i
i ii 2138  i9

Slide 10-9Copyright © 2011 Pearson Education, Inc.
Simplify. (4 + 7i) –(2 + i)
a) 2 + 7i
2
b) 2 + 8i
c) 6 + 6i
d) 6 + 8i

Slide 10-10Copyright © 2011 Pearson Education, Inc.
Simplify. (4 + 7i) –(2 + i)
a) 2 + 7i
2
b) 2 + 8i
c) 6 + 6i
d) 6 + 8i

Multiply Complex Numbersii74 1
1
2


i
i 2
28i 128 28

Multiply Complex Numbers ii857 1
1
2


i
i 2
5635 ii 15635 i 5635i i3556
standard a + bi form

Multiply Complex Numbers ii425 1
1
2


i
i 2
28520 iii  2
2320 ii 12320 i 2320 i i322

Multiply Complex Numbers 
2
35i 1
1
2


i
i 2
9151525 iii  193025 i 93025 i i3016
Rewrite & Foil   ii 3535 

Slide 10-15Copyright © 2011 Pearson Education, Inc.
Multiply. (4 + 7i)(2 + i)
a) 15 + 10i
b) 1 + 10i
c) 15 + 18i
d) 15+ 18i

Slide 10-16Copyright © 2011 Pearson Education, Inc.
Multiply. (4 + 7i)(2 + i)
a) 15 + 10i
b) 1 + 10i
c) 15 + 18i
d) 15+ 18i

Divide Complex Numbersi7
6 1
1
2


i
i i
i
i

7
6 2
7
6
i
i
 17
6


i 7
6


i 7
6i
 7
6i

Binomial denominator conjugate
Divide Complex Numbersi6
5 1
1
2


i
i 

i
i
i 


 6
6
6
5 2
36
530
i
i


 136
530



i i
37
5
37
30

standard a + bi form37
530i

Slide 10-19Copyright © 2011 Pearson Education, Inc.
Write in standard form.
a)
b)
c)
d) 4
23
i
i

 5 14
13 13
i
 5 14
13 13
i
 11 14
13 13
i
 11 14
13 13
i

Slide 10-20Copyright © 2011 Pearson Education, Inc.
Write in standard form.
a)
b)
c)
d) 4
23
i
i

 5 14
13 13
i
 5 14
13 13
i
 11 14
13 13
i
 11 14
13 13
i

Powers of i:1
1
2


i
i i 111
224
iii iiiii  1
23 1
2
i 


111
1
111
1
448
347
246
45




iii
iiiii
iii
iiiii


41
i ii
10
4 ii1 
15
i 
3
3
4
ii ii1 i 111
224
iii iiiii  1
23 1
2
i Powers of i:

432
iiii  Simplify:
Tags