In-Vitro-In Vivo (IVIVC).pdf

PraffulPandey1 548 views 23 slides May 08, 2023
Slide 1
Slide 1 of 23
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23

About This Presentation

An in vitro – in vivo correlation (IVIVC) is defined by the U.S Food and Drug Administration (FDA) as a predictive mathematical model describing the relationship between the in vitro property of an oral dosage form and relevant in vivo response.


Slide Content

IN-VITRO-IN VIVO
CORRELATION (IVIVC)
Submitted By: Rahul Pal, Prachi Pandey Submitted to: Dr. Tejpal Yadav
M. PHARM (PHARMACEUTICS), II
ND
SEM
Subject:“Advanced Biopharmaceutics & Pharmacokinetics”
Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Jaipur, Rajasthan India.

INTRODUCTION
IVIVCplays an critical role in
drug development and in
optimization of formulation
which is certainly a time
consuming and expensive
process.
In IVIVC, “C”denotes
“Correlation” whichmeans
“The degree of relationship”
between Two variables.
“ThetermIVIVC,couldalsobeemployedtoestablishdissolutionspecification
andtosupportand/orvalidatetheuseofdissolutionmethods.”

IVIVC: DEFINITION
USP(UnitedStatePharmacopoeia)Definition:“Theestablishmentofrationalrelationshipbetweena
biologicalpropertyoraparameterderivedfromabiologicalpropertyproducedbyadosagefromand
physicochemicalpropertyofsamedosageform”.
Conceptually,IVIVCdescribesarelationshipbetweenthein-vitrodissolution/releaseversusthein-vivo
absorption.
FDA(FoodandDrugAdministration)Definition:“Apredictivemathematicalmodeldescribing
relationshipbetweenin-vitropropertyofadosageformandin-vivoresponse.”

IN VITRO-IN VIVO CORRELATION
(IVIVC)
Itisdefinedas“Thepredictivemathematicalmodelthatdescribestherelationshipbetweeninvitroproperty
(suchasrate&extentofdissolution)ofadosageformandin-vivoresponse(suchasplasmadrug
concentrationoramountofdrugabsorbed)”.
-ThemainobjectivesofdevelopingandevaluatingIVIVCistousedissolutiontesttoserveasalternatefor
In-vivostudyinhumanbeings.
-Assuringthebioavailabilityofactiveingredientsfromadosageform.
-Supportandorvalidatestheuseofdissolutionmethodsandspecification.

APPROACHES
Therearemainlyoftwoapproaches:
Byestablishingarelationshipbetweenthein-vitrodissolutionandthein-vivobioavailability
parameters.
Byusingthedataobtainedfrompreviousbioavailabilitystudiestomodifythedissolutionmethodology
inordertoarriveatmeaningfulin-vitroinvivocorrelation

PARAMETERS FOR RELATED
CORRELATION
IN-VITRO
Dissolution rate.
Percentage (%) drug dissolved.
Percent drug dissolved.
IN-VIVO
Absorption rate (or absorption time)
Percent of drug absorbed.
Maximum plasma concentration, Cmax.
Serum drug concentration, Cp

LEVELS OF CORRELATION
IN IVIVC
Correlation
level
LEVEL B
LEVEL C
MULTIPLE C
LEVEL A

DIFFERENT LEVEL OF CORRELATION
Highestcategoryof
correlation.
Linearcorrelation.
Superimposablein-vitroand
in-vivoinputcurveorcanbe
madesuperimposableby
userofconstantoffsetvalue.
Mostinformativeanduseful
from a regulatory
perspective.
Usestheprincipleof
statisticalmomentanalysis.
The mean in-vitro
dissolutiontimeiscompared
eithertothemeanresidence
time(MRT)ortothemean
in-vivodissolutiontime.
Isnotapoint-to-point
correlation.
LevelBcorrelationarerarely
seenintheNDAs.
Level C correlation
representsasinglepoint
correlation.
Onedissolutiontimepoint
(t50%,t90%)iscomparedto
onemeanpharmacokinetics
parametersuchasAUC,
tmaxandCmax.
Weakestlevelofcorrelation
aspartialrelationship
betweenabsorptionand
dissolutionisestablished.
LEVEL A LEVEL B LEVEL C

MULTIPLE LEVEL C
MultipleLevelCcorrelationrelatesoneorseveralpharmacokineticsparametersofinterest(Cmax,AUC,
oranyothersuitableparameters)totheamountofdrugdissolvedatseveraltimepointsofthedissolution
profile.
ItscorrelationismoremeaningfulthanthatofthelevelCasseveraltimepointsareconsidered.

DISSOLUTION PROFILE COMPARISON
Definition:“Itisagraphicallyrepresentationintermsof(concentrationvs.time)ofcompletereleaseofAPI
fromadosagefrominaappropriateselecteddissolutionmedium”.
Objectives:
Developmentofbioequivalentproduct.
Todevelopin-vitro-in-vivo(IVIVC)correlationwhichcanhelptoreducethecosts,speed-upproduct
developmentandreducedtheneedofperformcostlybioavailabilityhumanvolunteerstudies.
Tostabilizefinaldissolutionspecificationforthepharmacological.
Foroptimizingthedosageformulabycomparingthedissolutionprofilesofvariousformulasofthesame
API.

IMPORTANCE OF DISSOLUTION
PROFILE COMPARISON
DissolutionprofileofanAPIreflectsitsreleasepatternundertheselectedconditionsets,i.e.either
sustainedreleaseorimmediatereleaseoftheformulatedformulas.
Foroptimizationthedosageformformulabycomparingthedissolutionprofileofvariousformulasof
thesameAPI.
FDAhasplacedmoreemphasisondissolutionprofilecomparisoninthefieldofpostapprovalchanges.
ByknowingthedissolutionprofileofparticularoftheBRAND
®
.

METHODS TO COMPARE DISSOLUTION
PROFILE

GRAPHICAL METHOD
Graphicalmethodisfirststepincomparingdissolutionprofileanditiseasytoimplementbutitisdifficult
tomakedefinitiveconclusionsfromtheit.
Inthismethod,plotgraphoftimevs.concentrationofsolute(drug)inthedissolutionmediumor
biologicalfluids.
Theshapeoftwocurvesiscomparedfromcomparisonofdissolutionpatternsandtheconcentrationof
drugateachpointiscomparedforextentofdissolution.
Iftwoormorecurvesareoverlappingthenthedissolutionprofileiscomparable.
Ifdifferenceissmallthenitisacceptablebuthigherdifferencesindicatethatthedissolutionprofileisnot
comparable.

DISTINGUISH BETWEEN
STUDENT
T-TEST AND ANOVA
Itisastatisticaltestusedtocomparethemeansof
twosamples.
Thecommontypesoft-test,areone-sample,
two-sampleandpairedt-test.
Theteststatisticalvalueift.
Ifthet-soreort-valueissmall,thegroupor
samplesaresimilar,whereasifthet-valueis
large,thegrouporsamplesaredifferent.
Itisastatisticalmethodthatcomparesthemeans
ofmorethantwosamples.
Ithavingtwotypessuchasone-wayandtwo-
wayANOVA.
TheteststatisticalvalueifF.
ThehighertheFvalue,thereexistsignificant
variationbetweensampleorgroupsmeans,anda
lowFvalueindicateslowvariability.
ANOVA TestStudent t-test

METHODS OF DEPENDENT
METHOD
Zero-order kineticsFirst-order kinetics
Korsmeyer-
Peppas Model
Higuchi ModelHixon-Crowell Model
Osmotic/
transdermal
system
Water-soluble
druginpolymer
matrix
Erodible matrix
formulation
Diffusionmatrix
formulation
Thevariousdependentmethodscanbeusedtocomparethedissolutionprofilebutselectingthemodel,
interpretationofmodelparametersandsettingsimilaritylimitisdifficult.

MODEL DEPENDENT METHODS:
ZERO ORDER KINETICS
ZeroorderAPIcontributesdrugreleasefromdosageformthatisindependentofamountofdrugindeliverysystem
(constantdrugrelease):
Qt = Q
o+ K
ot
Where,Qtistheamountofdrugdissolutionintimet,QoistheamountofdruginthesolutionandKoisthezeroorder
kineticsconstantexpressedinunitsofconcentration/time.
Plot:Thegraphplottedbetweencumulativeamountofdrugreleasedversustime.
Application:Transdermalsystem,aswellasmatrixtabletswithlowsolubilitydrugsincoatedforms,osmoticsystemsetc.
Thisreleaseisachievedbymaking:
Reservoirdiffusionsystems.
Osmoticallycontrolleddevices.

FIRST ORDER MODEL (WATER SOLUBLE
DRUGS IN MATRIX)
log C = log C
0–Kt/2.303
WhereC
oistheinitialconcentrationofdrug,Kisthefirstorderrateconstantandtisthetime.
Plot:logcumulativepercentageofdrugremainingvs.timewhichwouldyieldastraightlinewithaslope
of–K/2.303.
Application:Therelationdescribingthedrugdissolutionindosageformsuchasthosecontainingwater
solubledrugsinporousmatrix.

HIXON-CROWELLMODEL (ERODIBLE MATRIX
FORMULATION)
Itmodelusedtoevaluatethedrugreleasewiththechangesinthesurfaceareaandthediameterofthe
particles/tablets.Thismodelisalsoknownas“RootLaw”.
HixonandCrowelldescribingthis;
W
o
1/3
–W
t
1/3
= kt
Wherewoistheinitialamountofdrug,w
tistheremainingamountofdrugattimet.
Plot:Dataistobeplottedcuberootofdrugpercentageremaininginthematrixversustime.
Application:Appliedtodosageformssuchastablet,wherethedissolutionoccursinplanesthatare
paralleltothedrugsurfaceifthetabletdimensiondiminishproportionally.

HIGUCHI MODEL (DIFFUSION MATRIX
FORMULATION)
Thismethod/modelusedtostudythereleaseofwatersolubleandlowsolubledrugsincorporatedin
semisolidandsolidmatrix.
ThisisgivenbyHiguchi;
Q =
??????
??????
Where,Qistheamountofdrugreleasedintime‘t’perunitarea,kisHiguchiconstantandTis
timeinhr.
Plot:Thedataisobtainedistobeplottedascumulativepercentagedrugreleaseversussquare
rootoftime.
Application:Modifiedreleaseofdosageforms,transdermalsystemandmatrixtabletwithwater
solubledrugs.

KORSMEYER -PEPPAS MODEL
(SWELLABLE POLYMERIC DEVICES)
Thisisempiricalexpressionrelatesthefunctionsoftimefordiffusioncontrolledmechanism.
Itisgivenbytheequation;
Mt/Ma = Kt
n
WhereMt/Maisfunctionsofdrugreleased,tistimeandkistheconstantstructuralandgeomatical
characteristicsofthedosageform.
nisthereleasecomponentswhichisindicativeofdrugreleasemechanism.
Ifn=1,thereleaseiszeroorder.
N=0.5thereleaseisbestdescribedbytheFickiandiffusion.
0.6<n<1thenreleaseisthoughamnomalusdiffusionorcasetwodiffusion.
Thismodelaplotofpresentdrugreleaseversustimeisliner.

GRAPHICAL REPRESENTATION OF MODELS
Higuchi-Model Korsemeyar Peppas-Model Higuchi-Model

SIMILARITY FACTORS
f1 Factors
Itcalculatesthepercent(%)differences
betweenthetwocurvesateachpointandisa
measurementoftherelativeerrorbetweenthe
twocurves.
f2 Factors
Itislogarithmicreciprocalsquareroot
transformationofthesumoferrorandisa
measurementofthesimilarityinthepercent
(%)dissolutionbetweenthetwocurves.
Thevaluersoff1andf2aresensitivetothenumberofdissolutiontimepointused.