Induction motors are electric motors that use alternating current (AC)

KUMARS641064 37 views 30 slides Jun 19, 2024
Slide 1
Slide 1 of 30
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30

About This Presentation

Induction motors


Slide Content

INDUCTION MOTOR
Scalar Control
(squirrel cage)
MEP 1523
ELECTRIC DRIVES

Scalar control of induction machine:
Control of induction machine based on steady-state
model (per phase SS equivalent circuit):
R
r’/s
+
V
s

R
s
L
ls L
lr’
+
E
ag

I
s I
r’
I
m
L
m

Scalar control of induction machine

r
s
T
rated
Pull out
Torque
(T
max)
T
e

ss
m

rated
rotor
T
L
T
e
Intersection point
(T
e=T
L) determines the
steady –state speed

Given a load T–characteristic, the steady-state speed
can be changed by altering the T–of the motor:
Scalar control of induction machine
Pole changing
Synchronous speed change with
no. of poles
Discrete step change in speed
Variable voltage (amplitude),
frequency fixed
E.g. using transformer or triac
Slip becomes high as voltage
reduced –low efficiency
Variable voltage (amplitude),
variable frequency
Using power electronics converter
Operated at low slip frequency

Variable voltage, fixed frequency0 20 40 60 80 100 120 140 160
0
100
200
300
400
500
600
Torque
w (rad/s)
Lower speed slip higher
Low efficiency at low speed
e.g. 3–phase squirrel cage IM
V = 460 V R
s= 0.25 
R
r=0.2 L
r= L
s= 0.5/(2*pi*50)
L
m=30/(2*pi*50)
f = 50Hz p = 4

Variable voltage, variable frequency
At low slip
Constant V/f operation

Variable voltage, variable frequency –Constant V/f
If Φ
agis constant T
eα slip frequency

f
V
f
E
ag
 ag
 Approximates constant air-gap fluxwhen E
ag is large
E
ag= k f 
ag
= constant
Speed is adjusted by varying f -maintaining V/f to
approximate constant air-gap flux
How do we make constant ?ag

Variable voltage, variable frequency –Constant V/f

0 20 40 60 80 100 120 140 160
0
100
200
300
400
500
600
700
800
900
Torque
50Hz
30Hz
10Hz Variable voltage, variable frequency –Constant V/f
Characteristic with constantag

V
rated
f
rated
V
s
f
Variable voltage, variable frequency
Constant constant V/f ag

Constant slope

Constant V/f–open-loop
VSI
Rectifier
3-phase
supply IM
Pulse
Width
Modulator

s*
+
Ramp
f
C
Variable voltage, variable frequency
V
rate limiter is needed to ensure the slip
change within allowable range (e.g. rated
value)

Constant V/f–open-loop
Variable voltage, variable frequency
Simulation example: 415V, 50Hz, 4 pole, R
s= 0.25, R
r= 0.2,
L
r=L
s= 0.0971 H, L
m= 0.0955, J = 0.046 kgm
2
, Load: k
2is
To Workspace2
speed
To Workspace1torque
To Workspace
In1Out1
Subsystem
Signal 1
Signal Builder
Scope1
Scope
Rate Limiter
Va
Vb
Vc
isd
isq
ird
speed
Vd
irq
Vq
Te
Induction Machine
In1
Out1
Out2
Out3
Constant V/Hz

Constant V/f–open-loop
Variable voltage, variable frequency
0 0.5 1 1.5 2 2.5 3 3.5
0
10
20
30
40
50
Signal 1
Time (sec)
constant_vhz_withoutBoost/Signal Builder : Group 1
Simulation example: 415V, 50Hz, 4 pole, R
s= 0.25, R
r= 0.2,
L
r=L
s= 0.0971 H, L
m= 0.0955, J = 0.046 kgm
2
, Load: k
2

Constant V/f–open-loop
Variable voltage, variable frequency
Simulation example: 415V, 50Hz, 4 pole, R
s= 0.25, R
r= 0.2,
L
r=L
s= 0.0971 H, L
m= 0.0955, J = 0.046 kgm
2
, Load: k
20 20 40 60 80 100 120 140 160
-50
0
50
100
150
200
250
300
350
400
450

Constant V/f–open-loop
Variable voltage, variable frequency
Simulation example: 415V, 50Hz, 4 pole, R
s= 0.25, R
r= 0.2,
L
r=L
s= 0.0971 H, L
m= 0.0955, J = 0.046 kgm
2
, Load: k
20 20 40 60 80 100120140160180200
-100
0
100
200
300
400
500 0 0.5 1 1.5
-50
0
50
100
150
200
0 0.5 1 1.5
-200
0
200
400
600
With almost no rate limiter

Constant V/f–open-loop
Variable voltage, variable frequency
Simulation example: 415V, 50Hz, 4 pole, R
s= 0.25, R
r= 0.2,
L
r=L
s= 0.0971 H, L
m= 0.0955, J = 0.046 kgm
2
, Load: k
2
With 628 rad/s
2-20 0 20 40 60 80 100 120 140 160
-50
0
50
100
150
200
250
300
350
400
450 0 0.5 1 1.5
-50
0
50
100
150
200
0 0.5 1 1.5
-200
0
200
400
600

Problems with open-loop constant V/f
At low speed, voltage drop across stator impedance is
significant compared to airgap voltage -poor torque
capability at low speed
Solution:
(i) Voltage boost at low frequency
(ii) Maintain I
mconstant stator current control
Variable voltage, variable frequency
Constant V/f–open-loop low speed problems

Variable voltage, variable frequency0 20 40 60 80 100 120 140 160 180
0
50
100
150
200
250
300
350
400
450
500
•Torque deteriorate at low frequency –hence compensation commonly
performed at low frequency
•In order to truly compensate need to measure stator current –seldom
performed
Constant V/f–open-loop low speed problems (i) voltage boost

Variable voltage, variable frequency
•Torque deteriorate at low frequency –hence compensation commonly
performed at low frequency
•In order to truly compensate need to measure stator current –seldom
performed0 20 40 60 80 100 120 140 160 180
0
50
100
150
200
250
300
350
400
450
500
With voltage
boost of I
rated*R
s
Constant V/f–open-loop low speed problems (i) voltage boost

Voltage boost at low frequency
V
rated
f
rated
Linear offset
Non-linear offset –varies with I
s
Boost
Variable voltage, variable frequency
Constant V/f–open-loop low speed problems (i) voltage boost

VSI
Rectifier
3-phase
supply IM
Pulse Width
Modulator
V
boost

s*
+
+
V
Ramp
f
C
Variable voltage, variable frequency
I
dc
+
V
dc
-
Constant V/f–open-loop low speed problems (i) voltage boost

Variable voltage, variable frequency
Constant V/f–open-loop low speed problems (i) Constant I
m

ag, constant → E
ag/f , constant → I
m, constant (rated)
R
r’/s
+
V
s

R
s
L
ls L
lr’
+
E
ag

I
s I
r’
I
m
L
m
maintain at rated
Controlled to maintain I
mat rated

Variable voltage, variable frequency
Constant V/f–open-loop low speed problems (i) Constant I
ms
r
mlr
r
lr
m I
s
R
)LL(j
s
R
Lj
I


 m
r
r
r
r
r
r
s
I
s
R
L
1
j
s
R
Lj
I














•Current is controlled using current-
controlled VSI
•The problem of stator impedance drop is
solved
•Dependent on rotor parameters –
sensitive to parameter variation,I
1T
1
j
1Tj
I
m
r
r
r
slip
rslip
s














From per-phase equivalent circuit,

VSI
Rectifier
3-phase
supply IM
*
+
+ |I
s|
slip
C
Current
controller

s
PI
+
Variable voltage, variable frequency

r
-
Current reference generator
Tacho
Constant V/f–open-loop low speed problems (i) Constant I
m

Constant V/f
Variable voltage, variable frequency
Poor speed regulation
Problems with open-loop constant V/f
Solution:
(i) Slip compensation
(ii) Closed-loop control

Constant V/f–poor speed regulation: (i) slip compensation
Variable voltage, variable frequency
T
ω
r(rad/s)
ω
slip1
ω
r1
T
1
ω
r2≈ω
s1*
T
2
Motor characteristic
AFTER slip
compensation
ω
s2*=ω
s1*+ω
slip1
ω
slip1
ω
s1*
T
loadMotor characteristic
BEFORE slip
compensation

Constant V/f–poor speed regulation: (i) slip compensation
VSI
Rectifier
3-phase
supply IM
Pulse Width
Modulator
V
boost
Slip speed
calculator

s*
+
+
++ V
V
dcI
dc
Ramp
f
C
Variable voltage, variable frequency
I
dc
+
V
dc
-

Variable voltage, variable frequency
How is the slip frequency calculated ?
P
dc= V
dcI
dc
P
motor,in= P
dc–P
inv,losses
P
air-gap
P
motor,in
Stator Copper
lossess
Stator Core
losses
ROTORSTATOR
+
V
dc

I
dc
INV
Constant V/f–poor speed regulation: (i) slip compensation

Variable voltage, variable frequency
How is the slip frequency calculated ?
P
air-gapc= T
e
syn T
e= P
air-gap/
syn
For constant V/f control,rated,slip
rated,e
slip
e
TT


 rated,e
rated,slip
eslip
T
T


Constant V/f–poor speed regulation: (i) slip compensation

Variable voltage, variable frequency
•Require speed encoder
•Increase complexity
Constant V/f–poor speed regulation: (i) closed-loop speed