PostFix Expression A + B -> AB + A - B -> AB - A * B -> AB * A / B -> AB /
Precedence Of Operators in C OPERATOR DESCRIPTION ASSOCIATIVITY ( ) PARANTHESIS LEFT TO RIGHT $ OR ^ EXPONENT RIGHT TO LEFT * / % MULTIPLICATION/DIVISION/MODULU S LEFT TO ROGHT + - ADDITION/SUBTRACTION LEFT TO RIGHT
Infix to Postfix Conversion A + B + C A – B - C A * B * C A + B * C ( A + B ) * C A $ B $ C
Infix to Postfix Conversion ( A + B ) * ( C – D ) A B + C D - * 2. A $ B * C – D + E / F / ( G + H ) A B $ C * D – E F / G H + / + 3. ( ( A + B ) * C - ( D – E ) ) $ ( F + G ) A B + C * D E - - F G + $ 4. A – B / ( C * D $ E ) A B C D E $ * / - 5. A – (B / C + (D % E * F) / G)* H A B C / D E F * % G / + H * –
Infix to Postfix Conversion ( A + B ) * ( C – D ) $ E * F ( A + B ) * ( C $ ( D – E ) + F ) – G A + ( ( ( B – C ) * ( D – E ) + F ) / G ) $ ( H – J )
EVALUATE THE FOLLOWING POSTFIX EXPRESSION .ASSUME A = 1 , B= 2 , C = 3 A B + C – B A + C $ - 1 2 + 3 – 2 1 + 3 $ - A B C + C B A - + * 1 2 3 + 3 2 1 - + *