5G-FOG 35
6. Dagan, M., Herman, T., Harrison, R., Zhou, J., Giladi, N., Ruffini, G., Manor, B.,
Hausdorff, J.M.: Multitarget transcranial direct current stimulation for freezing of
gait in Parkinson’s disease. Mov. Disord.33(4), 642–646 (2018)
7. Prateek, G.V., Skog, I., McNeely, M.E., Duncan, R.P., Earhart, G.M., Nehorai,
A.: Modeling, detecting, and tracking freezing of gait in Parkinson disease using
inertial sensors. IEEE Trans. Biomed. Eng.65(10), 2152–2161 (2018)
8. Camps, J., Sam`a, A., Mart´ın, M., Rodr´ıguez-Mart´ın, D., P´erez-L´opez, C., Moreno
Arostegui, J.M., Cabestany, J., Catal`a, A., Alcaine, S., Mestre, B., Prats, A.,
Crespo-Maraver, M.C., Counihan, T.J., Browne, P., Quinlan, L.R., Laighin, G.,
Sweeney, D., Lewy, H., Vainstein, G., Costa, A., Annicchiarico, R., Bay´es,
`
A.,
Rodr´ıguez-Molinero, A.: Deep learning for freezing of gait detection in Parkin-
son’s disease patients in their homes using a waist-worn inertial measurement unit.
Knowl.-Based Syst.139, 119–131 (2018)
9. Sam`a, A., Rodr`ıguez-Mart`ın, D., P´erez-L´opez, C., Catal`a, A., Alcaine, S., Mestre,
B., Prats, A., Crespo, M.C., Bay´es,
`
A.: Determining the optimal features in freez-
ing of gait detection through a single waist accelerometer in home environments.
Pattern Recogn. Lett.105, 135–143 (2018)
10. Bigy, A.A.M., Banitsas, K., Badii, A., Cosmas, J.: Recognition of postures and
Freezing of Gait in Parkinson’s disease patients using Microsoft Kinect sensor. In:
2015 7th International IEEE/EMBS Conference on Neural Engineering (NER),
pp. 731–734. IEEE (2015)
11. Amini, A., Banitsas, K., Young, W.R.: Kinect4fog: monitoring and improv-
ing mobility in people with parkinson’s using a novel system incorporating the
Microsoft Kinect v2. Disabil. Rehabil. Assist. Technol. 1–8 (2018)
12. Rahim, M.G., Goodyear, C.C., Kleijn, W.B., Schroeter, J., Sondhi, M.M.: On the
use of neural networks in articulatory speech synthesis. J. Acoust. Soc. Am.93(2),
1109–1121 (1993)
13. Kung, S.-Y., Taur, J.-S.: Decision-based neural networks with signal/image classi-
fication applications. IEEE Trans. Neural Netw.6(1), 170–181 (1995)
14. Chu, W., Bose, N.: Speech signal prediction using feedforward neural network.
Electron. Lett.34(10), 999–1001 (1998)
15. DeKruger, D., Hunt, B.R.: Image processing and neural networks for recognition
of cartographic area features. Pattern Recogn.27(4), 461–483 (1994)
16. Cosatto, E., Graf, H.P.: A neural network accelerator for image analysis. IEEE
Micro3, 32–38 (1995)
17. Kvasniˇcka, V.: An application of neural networks in chemistry. Chem. Pap.44(6),
775–792 (1990)
18. Lerner, B., Levinstein, M., Rosenberg, B., Guterman, H., Dinstein, L., Romem,
Y.: Feature selection and chromosome classification using a multilayer perceptron
neural network. In: 1994 IEEE International Conference on Neural Networks. IEEE
World Congress on Computational Intelligence (1994)
19. Lek, S., Gu´egan, J.-F.: Artificial neural networks as a tool in ecological modelling,
an introduction. Ecol. Model.120(2–3), 65–73 (1999)
20. Colasanti, R.: Discussions of the possible use of neural network algorithms in eco-
logical modeling. Binary Comput. Microbiol.3(1), 13–15 (1991)
21. Yang, X., Shah, S.A., Ren, A., Zhao, N., Zhao, J., Hu, F., Zhang, Z., Zhao, W.,
Rehman, M.U., Alomainy, A.: Monitoring of patients suffering from REM sleep
behavior disorder. IEEE J. Electromagn. RF Microwaves Med. Biol.2(2), 138–143
(2018)