INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
1,257 views
48 slides
Mar 04, 2024
Slide 1 of 48
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
About This Presentation
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
Size: 2.06 MB
Language: en
Added: Mar 04, 2024
Slides: 48 pages
Slide Content
INTRODUCTION
TO CONIC
SECTIONS
PRE-CALCULUS
STEM 11
LEARNING OBJECTIVES
Atthe end of this lesson, you are expected to:
•illustrate the different types of conic sections: parabola,
ellipse, circle, hyperbola, and degenerate cases
•define a circle
•determine the standard form of equation of a circle
•define a parabola
•determine the standard form of equation of a parabola
INTERACTIVE 3D OF CONIC
SECTIONS
https://www.intmath.com/plane-analytic-
geometry/conic-sections-summary-interactive.php
COMMON PARTS OF THE CONIC SECTIONS
Theconicsectionsmayhavelookeddifferent;however,
theystillhavecommonparts.
VERTEX
CENTER
FOCUS
DIRECTRIX
COMMON PARTS OF THE CONIC SECTIONS
VERTEX
Vertexisanextremepointonaparabola,hyperbola,and
ellipse.Although,ellipsehasverticesandco-vertices.
with horizontal axis
COMMON PARTS OF THE CONIC SECTIONS
VERTEX
Vertexisanextremepointonaparabola,hyperbola,and
ellipse.Although,ellipsehasverticesandco-vertices.
with vertical axis
COMMON PARTS OF THE CONIC SECTIONS
FOCUS AND DIRECTRIX
Thefocusanddirectrixarethepointandthelineonaconicsection
thatareusedtodefineandconstructthecurverespectively.The
distanceofanypointonthecurvefromthefocustothedirectrixis
proportionasshownontheimagesbelowbythegreenlines.Ina
plane,thecirclehas no defineddirectrix.
with horizontal axis
COMMON PARTS OF THE CONIC SECTIONS
FOCUS AND DIRECTRIX
Thefocusanddirectrixarethepointandthelineonaconicsection
thatareusedtodefineandconstructthecurverespectively.The
distanceofanypointonthecurvefromthefocustothedirectrixis
proportionasshownontheimagesbelowbythegreenlines.Ina
plane,thecirclehas no defineddirectrix.
with vertical axis
COMMON PARTS OF THE CONIC SECTIONS
CENTER
Forcircles,thecenteristhepointequidistantfromany
pointonthesurface.
LookingattheCartesianplane,the
vertexisatthepoint(0,0)sinceitis
theextremepointoftheparabola.
The focusis at (3,0).
Inordertosolveforthedirectrix,
weneedtolookattheorientationof
theparabola.Sincetheformulahas
ahorizontalaxis,theformulaforthe
directrixwillbe�=−??????.Thus,the
equationofthedirectrixis�=−3.
Step1:Plotthevertexandthe
focus,andidentifythecurve.
LookingattheGatewayArch,it
lookslikeaparabola.
Step 2: Solve for the directrix.
Since the focus is at (0, −3),
the directrix is �= 3
B.Usingthe image below, complete the table and
solve for the directrixgiven the vertices and foci.
Assignment:ChallengeYourself
Answerthefollowingquestions:
1.YousawAlbertplayingwithadouble-nappedconeandapaper.He
putthepaperontopofoneconeandsaidthathewasabletoforma
conicsection.Doyouagreewithhim?Explainyouranswer.
2.Aglasswasplacedonthetable.Ifyouholdaflashlightasshown
below,whatkindofcurvewillbeformedbyitsshadow?
3. If you shift a parabola with vertex at the origin, two units to the right,
what will be the new vertex?