INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf

1,257 views 48 slides Mar 04, 2024
Slide 1
Slide 1 of 48
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48

About This Presentation

INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf


Slide Content

INTRODUCTION
TO CONIC
SECTIONS
PRE-CALCULUS
STEM 11

LEARNING OBJECTIVES
Atthe end of this lesson, you are expected to:
•illustrate the different types of conic sections: parabola,
ellipse, circle, hyperbola, and degenerate cases
•define a circle
•determine the standard form of equation of a circle
•define a parabola
•determine the standard form of equation of a parabola

TYPES OF
CONIC
SECTIONS
01

CONE
Aconeisdefinedasa
distinctive three-
dimensionalgeometric
figurewithaflatand
curvedsurfacepointed
towardsthetop.

DOUBLE-NAPPED CONE
Adouble-napped
conehastwo
conesconnected
atthevertex.

ACTIVITY: DRAW THAT CURVE

CONIC SECTIONS
Conicsectionsarethecurvesobtainedfromthe
intersectionbetweenadouble-nappedconeandaplane.

CIRCLE
Circlesareformedwhentheintersectionoftheplaneis
perpendiculartotheaxisofrevolution.
CONIC SECTIONS

ELLIPSE
Ellipsesareformedwhentheplaneintersectsoneconeat
anangleotherthan90°.
CONIC SECTIONS

PARABOLA
Parabolasareformedwhentheplaneisparalleltothe
generatinglineofonecone.
CONIC SECTIONS

HYPERBOLA
Hyperbolasareformedwhentheplaneisparalleltothe
axisofrevolutionory-axis.
CONIC SECTIONS

DEGENERATE CONIC SECTIONS
Degenerate conic
sectionsareformed
whenaplaneintersects
theconeinsuchaway
thatitpassesthrough
theapex.

DEGENERATE CONIC SECTIONS
Degenerateconicsectionsareformedwhenaplane
intersectstheconeinsuchawaythatitpassesthrough
theapex.

INTERACTIVE 3D OF CONIC
SECTIONS
https://www.intmath.com/plane-analytic-
geometry/conic-sections-summary-interactive.php

COMMON PARTS OF THE CONIC SECTIONS
Theconicsectionsmayhavelookeddifferent;however,
theystillhavecommonparts.
VERTEX
CENTER
FOCUS
DIRECTRIX

COMMON PARTS OF THE CONIC SECTIONS
VERTEX
Vertexisanextremepointonaparabola,hyperbola,and
ellipse.Although,ellipsehasverticesandco-vertices.
with horizontal axis

COMMON PARTS OF THE CONIC SECTIONS
VERTEX
Vertexisanextremepointonaparabola,hyperbola,and
ellipse.Although,ellipsehasverticesandco-vertices.
with vertical axis

COMMON PARTS OF THE CONIC SECTIONS
FOCUS AND DIRECTRIX
Thefocusanddirectrixarethepointandthelineonaconicsection
thatareusedtodefineandconstructthecurverespectively.The
distanceofanypointonthecurvefromthefocustothedirectrixis
proportionasshownontheimagesbelowbythegreenlines.Ina
plane,thecirclehas no defineddirectrix.
with horizontal axis

COMMON PARTS OF THE CONIC SECTIONS
FOCUS AND DIRECTRIX
Thefocusanddirectrixarethepointandthelineonaconicsection
thatareusedtodefineandconstructthecurverespectively.The
distanceofanypointonthecurvefromthefocustothedirectrixis
proportionasshownontheimagesbelowbythegreenlines.Ina
plane,thecirclehas no defineddirectrix.
with vertical axis

COMMON PARTS OF THE CONIC SECTIONS
CENTER
Forcircles,thecenteristhepointequidistantfromany
pointonthesurface.

LookingattheCartesianplane,the
vertexisatthepoint(0,0)sinceitis
theextremepointoftheparabola.
The focusis at (3,0).
Inordertosolveforthedirectrix,
weneedtolookattheorientationof
theparabola.Sincetheformulahas
ahorizontalaxis,theformulaforthe
directrixwillbe�=−??????.Thus,the
equationofthedirectrixis�=−3.

LET’S TRY
GiventhecurveontheCartesianplanebelow,identifythe
focus,vertex,anddirectrix.

Lookingatthegraph,wecansee
thatthefociareat(−2−3)and(6,
−3).
Notethatthecenteristhemidpoint
ofthefoci.Thus,wehavethe
followingsolution:

LET’S TRY
Identifythecoordinatesofthefociandthecenterofthe
graphbelow.

Step1:Plotthevertexandthe
focus,andidentifythecurve.
LookingattheGatewayArch,it
lookslikeaparabola.
Step 2: Solve for the directrix.
Since the focus is at (0, −3),
the directrix is �= 3

ASSESSMENT

A.Identifytheconicsectionorthepartthatisbeing
described.
1.Thesearetheconicsectionsthatareformedwhenthe
planeintersectsthedouble-nappedconeinsuchawaythat
itpassesthroughtheapex.
2.Thisconicsectionisformedwhentheplaneisparallelto
theaxisofrevolution.
3.Itisthemidpointofthetwofociforellipseandhyperbola.
4.Itreferstotheextremepointofaparabola.
5.Thesearethecurvesthatareobtainedbetweenthe
intersectionofadouble-nappedconeandaplane.
ASSESSMENT

B.Usingthe image below, complete the table and
solve for the directrixgiven the vertices and foci.

Assignment:ChallengeYourself
Answerthefollowingquestions:
1.YousawAlbertplayingwithadouble-nappedconeandapaper.He
putthepaperontopofoneconeandsaidthathewasabletoforma
conicsection.Doyouagreewithhim?Explainyouranswer.
2.Aglasswasplacedonthetable.Ifyouholdaflashlightasshown
below,whatkindofcurvewillbeformedbyitsshadow?
3. If you shift a parabola with vertex at the origin, two units to the right,
what will be the new vertex?