Inverse Trigonometric Function _ Class notes __ Manzil Legends-JEE (4).pdf

drvaishalikavathia 6 views 100 slides Oct 22, 2025
Slide 1
Slide 1 of 100
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100

About This Presentation

Short notes for itf which are quick for jee main


Slide Content

&

a: MANZIL 747

ONE SHOT
Inverse Trigonometry
Functions

La)
Cite
Vv

The ITF, denoted by sin”! x or arc sin x, cos”! x, tan”! x etc. denote the angles.

ae RR)

Siq AS!


&

la But trigonometric functions such as f(x) = tan x, f(x) = sin x etc. are not

bijective. Then how does these inverse exists?

&

a
{el | Domain, Range & Graph of ITF

Vv 3 = Sin la.

= SIMA, DA Be
E ) XE 33)

La)

| comments |

Vv

(1) sin”! xis monotonical increasing in its domain.
(2) It is a bounded function.
er It is an odd function.

(4) It is aperiodic.

(5) It is continuous.

O = cos 19)

| | Je cos In)
| Y= ze, Ve DO. coso= |
4 ,

“a
IG cones (o

(1) cos’! xis monotonic decreasing in its domain.

(2) It is a bounded function.
(3) It is aperiodic.
(4) It is neither even nor odd.

(5) It is continuous.
A

| f= tm) Pa 2)

sin E A ES) os @ | =

en

La)
| comments |
v

(Taking image of tan x in y = x)

(1)
(2)
(3)
(4)
(5)

tan”! x is monotonic increasing.

It is an odd function.
It is a continuous function.
It is aperiodic.

It is bounded function.

y=arc tar

La)

| comments |

Vv

(1) _ Itis monotonic decreasing function.
(2) It is a bounded function.

(3) It is aperiodic. arc coix

(4) Itis continuous everywhere.

y=arc cotx

(9 It is neither even nor odd.

La]

Gi Fred
D 4

(1) It is increasing in (-, -1] and

Ss

then again it is increasing [1, ©)
(2) Itis aperiodic.
{3) Itis neither even nor odd.
(4) It is continuous, wherever it is
defined for |x| > 1.

(5) Itis a bounded function.

La)
AL comments
Vv

(1)

(2)
(3)
(4)
(5)

It is decreasing in (-, -1] and
then again it is decreasing [1, ©)
It is aperiodic function.

Itis a bounded function.

Itis an odd function.

It is continuous, wherever it is

defined.

|x| <1
|x| <1

xeR
E
Ix|>1 10,1] = [5] or [0,3) u Gr]
nn

-5,5]- 0

Ixl21 2:2

xeR |

(0, 1)

From the above discussion following IMPORTANT points can be concluded.

A All the inverse trigonometric functions represent an angle.

(2)

(3)

If x > 0, then all six inverse trigonometric functions viz sin”! x, cos”! x, tan
Sun IN

“1x, sec“ x, cosec! x, cot"? x. Civer ong le, a Ast quede

If x < 0, then sin”! x, tan! x and cosec”! x represent an angle from -x/2
IN Nes =

to 0 (IV! quadrant).

a
{|| cos) e pS seé\az E

(4) If x < 0, then cos”! x, cot-! x and sec”! x le an obtuse _
— Le La ew —,

(Id quadrant)

(5) — HI quadrant is never used in the range of any inverse trigonometric



function.

@

(2) +c0s7! (-3) ON) + cot-1( (-3 ad
IN 0
a (ne raw)
7 1
lA
a ab
a 8 à Y ea !

N.

EP
Bact 6)

&

Us ise

(20) = 255 eof

DS

an

E)

ke en 1 D: + me = a — 0

COSRX + a
"

Ita RnB

Venta t tip

ha NE ne.
+. ety

Ty =

=o.

&

&

i 1 Aa)
sın (tan cos cot ( +) zu,

&

tan (2tan!2 2) = =

Find domain & range of the following functions : =

(a) fx) = cost [x]
ane: a i e,
4 <@< ay’ Peet E), e 2 ) e)

Tisak) [Paren 3,0
Fes EE)

a ER =y= sin"! be

o< <a

&

(d) fix) = cos"! (sgn x)

&

(a) (a) If cos”! x + cos”! y + cos”! z = 31, then compute the value of
x2004 4 y2004 4 72004 4 6

12003 42003 472003

(b) If (sin! x + sin”! y) (sin-! w + -1 z) = x2, then compute the value of =

(x+y) (w+z)

A

-1 1/77 E
The number of real solutions of tan VxG +1) + sin 1x2 + x +1 = Fis:

tel RD... Na

B: X+az 0: nn. xt
ds Rau:

© Infinite

© Ko Ko Ko |

If «= 3sin”* 8) and ß = 3cos”* 0) where the inverse trigonometric
functions take only the principal values, then the correct option(s) is/are :
[2005 Adv.]

cosß>0
sinB <0
cos (a + B) > 0

cosa<0

PN

The number of real roots of the equation

-1 1/2 = ice ins-
tan-1/x(x +1) + sin her x+1=7 is: [JEE Mains-2021]
APIO FS
pee

&

a

The domain of the function cosec” 4: is:

À
[JEE Mains-2021] “7

mE...

lo) von atkeyp or atl <-|
[-7,0) v 4,0) e a dí Be
> e IV

D 3% CE S Ne

ERICH
. _ y 0
DB 50 +.

A . any (3x+x-1 AN
The domain of the function f(x) = sin”! ( Fan: ) cos 1 (23) is
[JEE Mains-2022]

D p3
sofa
D [uo
B bos

&

La)
lll Properties of Inverse Trigonometric Function
Vv

0)
(ii)
(iii)
(iv)
(v)
(vi)

sin-!(-x) = -sin-1x ;
tan-!(-x) = -tan-ix;
cos!(-x)=n-cos'x;
cot-!(-x) = 11 - cot!x;
sec”1(-x) = x - sec’'x;

cosec-1(-x) = x - cosec-1x;

Ix] <1
xeR
Ix] <1
xeR
Ix]>1

Ix]>1

x e [-1, 1], y e [-1, 1], y is aperiodic
Sinfsi'(4)) =
in 3 (& )) %.
DA

(ii) y = cos(cos”*x) = x

x e [-1, 1], y e [-1, 1], y is aperiodic

(iii) y = tan(tan-!x) =x
ue
xe Ry eR, y is aperiodic

——
a

(4e (3) = 1

(iv) y = cot(cot-!x) = x
cae
xe Ry e R,yis aperiodic

(v) y= cosec(cosec-1x) = x

|x| > 1, ly] > 1, y is aperiodic

(vi) y = sec(sec-!x) = x

|x| > 1, ly| > 1, y is aperiodic

[Y= we}

„el a).

sl ae FE
Sin (e

wa

en

0)

&

y = sin”*(sin x), x, e Rye [- = =] periodic with period 2x and it is an odd
function.

Note : To draw the graph, plot only between x e [0, 1] and draw rest of the
graph using periodicity and odd function property.

7
—T—X, ASS

a 7 x
sin”*(sinx) = % RFA

(ii) y = cos-!(cos x), x, e R, y € [0, x] periodic with period 2x and it is an even
function.
Note : To draw the graph, plot only between x e [0, x] and draw rest of the
graph using periodicity and even function property.

=x, —Tr<x<o0

x, 0<x<rT yelasy-r relo,X].

cos”*(cosx) =

\@

Y= sit (sian) |] sin (sma) =
Sin (sh) = 1-3
EE AA à
AS

| gin !(sinz2) = -22 4 A N {ke mol!

sin!(siaa3) = 23-8% = a...
Urs ame

3

cos (cost) +

E ess (esu) = HA
i , css) :

co (0533) = 2348

ZN RES BK e

lo

x

\@

\@

Sy a
sm) = su) sel (sig = a
sint{_sina Y _ _ giql( sina
ee) | 1) N 4)

= SI, de 2 sn sra,

A = she

1

(ii) y = tan”*(tan x), x, e R- {(2n = 1)3n € 1} ye (5,5) periodic with period
mand it is an odd function.
Note : To draw the graph, plot only between x e (5,5) and draw rest of the
graph using periodicity.

xtn, —E<xr<-!
2 2

n 7
tan”*(tanx) ={ x, SDE

(iv) y = cot (cot x), x, e R- {nn}, y e (0, x) periodic with period x and neither
even nor odd function
Note : To draw the graph, plot only between x e (0, x ) and draw rest of the
graph using periodicity.

Ste, H<x<0
cot (cotxy={ x 0O<x<r
XT, n<x<2n

(v) y = cosec”!(cosec x), x, e R- {na,ne I}, ye [-2,0) U (0,2] periodic with

period 27 and it is an odd function.

(vi) 5 y=sec’!(sec x), y is periodic with period 2x.

n

xer-{(2n-1%nei},ye [0,2) u x]

2

Solve : cos” cos (= =) + cot cot (=)

&

MO torear (oS) + sin"? (nt de = er
(ns À oe éal ( u

cos (+ 3) al) E
on

Sin (5) A.

OB

Find the integral solution of the inequality
3x? + 8x < 2sin”*(sin 4) - cos“!(cos 4)

P-4
() cosec"! x = sin“!

(ii)

; |x] > 1 and sin"!x = cosec-1à |x} <1x#0

sec! x= ee) |x| > 1 and cos”tx = sect, a <1x#0
“11 zl

(iii) cotTix= \. MER ee E COsec a Sin at) = 2
&® «E (= fe) _A
© , 3 6 sec A(g)= ie 10

>? cot (8) = 52 Pace a

+! (-4 = i à

N:

Ps ®

DW simtxpcosi=zho, |x| <1 © «ini la = À
] Be reia) à.
Gi) tamixpcorj=h , xeR a “7
n
(ii) cosec”* xfsecd= 5 e |x| 21 % G

le: mel spi &@ vie rests) =
2.
I nl =
yang Oy

=| E |
> + ceo Eo ESE: |

Find sin-tcos (E)
10

Solve : i

a 4sin-!x + cos'!x=n
Se

Ust. + nu Pa

Ssitaz À
Z.

&

Solve : 0 neon n-!x + 3cot"!x = 27

&+n | lat 3 (dei! At E AR.

ES

Rh SAA _ x
2.

5 3G)

&

Maximum & Minimum values of (sin”!x)? + ad A

Pz CS Sab (arb).

> u (sit E est) = Es x) — 3 (cor viene Atsia F9

Ê = sx (cos! gotta) (sta! x)

y= 2 max es er x). [ a
Tr,

Maximum & Minimum values of (sin-!x)? + (cos-!x)? ) = Range =

PE = jo gs
a 34 + 3a! à

EYE

+

x
4

\~

(sita + Ces x us minimum vue

ie ern

en

ei +" a

Maximum & Minimum values of sin-1x + cos“!x + tan”!x
SS

@

E

The value of (e *) is equal to [JEE Main-2022] ==
4.

| NT ea ES)

ro je.

\@

3%

Ct
sono = 70528 +34 _ | —cos3%
a ana &- ar
9= 1%. 1.

a

© Ko Ko Ko |

sin“? (sin=) +cos? (cos) + tan? (tan) is equal to [JEE Main -2022] =.

117
12

177
12

317
12

ELA

a

© Ko Ko Ko |

The value of tan (2tan- 8) + sin"! 8) isequalto [JEE Main -2021]

—181
69

220
2

—291
76

151
63

@
The set of all values of k for which (tan~1x)3 + (cot"!x)? = =kn3,xER,is 7
the interval. [JEE Mains-2022]
<a A = Han! a) (cot A ars ae
Gen! at je 1G ee y) 2)
Co

Lo lea) y = Be 25 (al) RE tr), let ma
lO)

3 Ss
(8) Le a) ya ney un nt
de .

=e ES)

3 +3
3
ra (e hts 7 2)

D |
D EE TK x)

=)

&

The set of all values of k for which (tan=!x)? + (cot"!x)? = = kn?,x € R,is

the interval. [JEE Mains- ms

DEEE ie
gt (a +

I is lb tence
G2) = tea)
lo Eu 2) : ; -

32'8

D ki RAI) 2

tan”! x+y

tan-!x + tan-1y =| + tan! =,

T

== p

+y

ro Se: "| Say;
EN) Fa (a) 4485 (3) = er

x > 0,y > 0 and xy < 1(acute angle)

y $ > 0, y > 0 and. xy > 1(obtuse angle)

, x*>0y>0andxy=1


1

2x3)
= K+ toa.
= T- el

&

1 18
Ds da et ee ee ®
1 ten ¢ = |
nee, Ai

|— tank fang
PES) 5
6. = an B-
SES LG = Ge)
o <XtBCA
9¢ BC
ire
«+=. > v= ton" la,

Faces) = Hand. my
|

CRD! RS
wees aa

\@

Û A ten OL

Ia

Gall X+Y |
See ey (tano), a)
a >

ie cay ee
Tess ack.

(ES
JT. Hog <cotp

| =
; aa)
É

KB,
X<T

(a) tanTix —tan"ly = tan 2

1+xy

SALE 9$B<%H
2 2

2 Sx-p <a

x>0y>0

&

La]

ca
u,

[ah 1+tan-12 + td? 3=x) (Remember)

(ii) cot! 1 +cot! 2 + cot13== = (Remember)
“Y q

z Hi) qe (1 E
rare)

“a=

&

la Prove that: tan”*5 — tan-13 + tan-t2 = 2

Prove that: sec E) se)

Le
poa _H

B

Secx =

Me

tua o)

E)

a, + sin” a

Sr

T

N
Eb

3.

Powhatan (Gr) (0) + an (Ga) = ET
ee

(2) + tel
ik EA o

E an! Er =f A \

(i) fe) (Bee)

&

q . (tan741+tan712+tan713
(o) Prove that: sin”! [sin ze] =n-2

cot”t1+cot”12+cot”13

If tan-14 + tan-*5 = cot~1(A), then find 2.

oe 17 3
la Which is greater cos”! 7, teos 12 or cot"! (-1).

V7

lo, tanta + tan 'y + tan”?

(bte), 4
ian ei) where x > 0,y > 0,z > 0 and xy + yz + zx
E a [_x+ytz-xyz ],
a al where x > 0,y > 0,2 >0andxy+yz+zx>1

&

sin-!x + sin=!y
u sin*(x/1—y? +yV1=22) ‚ifx>0;y>0andx2+y2<ı)

n-sint(x AY +yvI—x) ifx >0;y >Oandx*+y?>1

OA reos O. cs
Sid nt sity = 8: ks om
x

ee 0 = sir (ange + VTE),
Sinx+p) = sin. eee ESA

Sing cosp + aa = Sin). T-B= sin! (arg HT)
NP te |

sin-1x — sin!y = sin*(x/ 1-y?-y

2),

>0;y>0

E)

cos~!x + cos~ty = cos”! [xy -v1-x2/1 =y2]
was es

er]
Cos (+B) zesse.

cosx CHR — SNASUB = cos D.
STE
Ne ETES

oo) ETS) kosa» = 0

à A cos“!(xy + I=? 1-72) y <y,x,y>0
cos” X — cos” y= :
bw Up —cos“*(xy + VI =x2,/1 =y?) x>y,xy>0

&

T—sin 12)

65.

33

Ti COS E =)

= inc =)
5 sin

65.

Ecos”! (2)
2 65

oo gs

The value of sin”! (2) — sin? 8) is equal to: [JEE Main-2019 (April)]

Sia =sinty = si (a Vay TE)

ET - 25)

— su 19 “6

The value of sin”! (2) — sin? 8) is equal to: [JEE Main-2019 (April)]

ns (©) id = i
= Ti NG:)(a 9 = NE x 196.

a — cos”! (8) = 6

»
æ
Pu
D

Z—cos*(2=) _ Mer oa) )

15 1 16
ao 3 +sin + Di is equal to:

[JEE Main-2020 (September)]

OO)

mp2 RA [si 12, 3 4/16
» | (ats = an ©)
gr à E 2)
Sin y Is _
D 57/2 | D ü IE NE
Cor

2n - (sin “144 sin

n

(x > >, then x is equal to

[2019 Main, 9 Jan I]

&

La]

E | Inverse Trigonometry Function
Vv

&

Simplification & Transformation of Inverse Functions

by Elementary Substitution & Their Graphs

a —(n + 2tan"*x) if x < —1
1. y=f(x) = sin! (5) = 2tanix if |x| <1
m—2tan-1x if x>1

(where, / = increasing and D = Decreasing)

Domain: R, Range : [- a

age (-%%)
NE de) . =

=
Let O= tm x.

ehr ge =
Y= sin! tan)
US

IRRE See (5 =

) TNR tainty XQ] à
e)= tx! Mo AL
EA

(q

©

1+x2

y = f(x) = cos“! (=) yA [A <0

Domain: R,

2tan-1x ifx>0

Range: [0, x)
X=+m8 .
DEl-x x
(3%)

8. ert)

&

&

E m+2tanix ifx<-1
y = f(x) = tan! A = 2tan"!x if lx] <1
—(m— 2tan™x) if x>1

Domain : R - (-1, 1), Range : (— =)
Katou

La)
GIN
Vv

Fi 2x 1-x? 2x
-1y = sin"! = -1 = -1
2tan”*x = sin a cos He = tan 12

for x € [0-1)

re es = f(5)+f(10)+f(3)
If f (x) = sin Ta + 2tan™x, then find POTES PRESS
Tags