If «= 3sin”* 8) and ß = 3cos”* 0) where the inverse trigonometric
functions take only the principal values, then the correct option(s) is/are :
[2005 Adv.]
cosß>0
sinB <0
cos (a + B) > 0
cosa<0
PN
The number of real roots of the equation
-1 1/2 = ice ins-
tan-1/x(x +1) + sin her x+1=7 is: [JEE Mains-2021]
APIO FS
pee
&
a
The domain of the function cosec” 4: is:
À
[JEE Mains-2021] “7
mE...
lo) von atkeyp or atl <-|
[-7,0) v 4,0) e a dí Be
> e IV
D 3% CE S Ne
ERICH
. _ y 0
DB 50 +.
A . any (3x+x-1 AN
The domain of the function f(x) = sin”! ( Fan: ) cos 1 (23) is
[JEE Mains-2022]
D p3
sofa
D [uo
B bos
&
La)
lll Properties of Inverse Trigonometric Function
Vv
x e [-1, 1], y e [-1, 1], y is aperiodic
Sinfsi'(4)) =
in 3 (& )) %.
DA
(ii) y = cos(cos”*x) = x
x e [-1, 1], y e [-1, 1], y is aperiodic
(iii) y = tan(tan-!x) =x
ue
xe Ry eR, y is aperiodic
——
a
(4e (3) = 1
(iv) y = cot(cot-!x) = x
cae
xe Ry e R,yis aperiodic
(v) y= cosec(cosec-1x) = x
|x| > 1, ly] > 1, y is aperiodic
(vi) y = sec(sec-!x) = x
|x| > 1, ly| > 1, y is aperiodic
[Y= we}
„el a).
sl ae FE
Sin (e
wa
en
0)
&
y = sin”*(sin x), x, e Rye [- = =] periodic with period 2x and it is an odd
function.
Note : To draw the graph, plot only between x e [0, 1] and draw rest of the
graph using periodicity and odd function property.
7
—T—X, ASS
a 7 x
sin”*(sinx) = % RFA
(ii) y = cos-!(cos x), x, e R, y € [0, x] periodic with period 2x and it is an even
function.
Note : To draw the graph, plot only between x e [0, x] and draw rest of the
graph using periodicity and even function property.
=x, —Tr<x<o0
x, 0<x<rT yelasy-r relo,X].
cos”*(cosx) =
\@
Y= sit (sian) |] sin (sma) =
Sin (sh) = 1-3
EE AA à
AS
| gin !(sinz2) = -22 4 A N {ke mol!
sin!(siaa3) = 23-8% = a...
Urs ame
3
cos (cost) +
E ess (esu) = HA
i , css) :
co (0533) = 2348
ZN RES BK e
lo
x
\@
\@
Sy a
sm) = su) sel (sig = a
sint{_sina Y _ _ giql( sina
ee) | 1) N 4)
= SI, de 2 sn sra,
A = she
1
(ii) y = tan”*(tan x), x, e R- {(2n = 1)3n € 1} ye (5,5) periodic with period
mand it is an odd function.
Note : To draw the graph, plot only between x e (5,5) and draw rest of the
graph using periodicity.
xtn, —E<xr<-!
2 2
n 7
tan”*(tanx) ={ x, SDE
(iv) y = cot (cot x), x, e R- {nn}, y e (0, x) periodic with period x and neither
even nor odd function
Note : To draw the graph, plot only between x e (0, x ) and draw rest of the
graph using periodicity.
Ste, H<x<0
cot (cotxy={ x 0O<x<r
XT, n<x<2n
(v) y = cosec”!(cosec x), x, e R- {na,ne I}, ye [-2,0) U (0,2] periodic with
period 27 and it is an odd function.
(vi) 5 y=sec’!(sec x), y is periodic with period 2x.
n
xer-{(2n-1%nei},ye [0,2) u x]
2
Solve : cos” cos (= =) + cot cot (=)
&
MO torear (oS) + sin"? (nt de = er
(ns À oe éal ( u
cos (+ 3) al) E
on
Sin (5) A.
OB
Find the integral solution of the inequality
3x? + 8x < 2sin”*(sin 4) - cos“!(cos 4)
P-4
() cosec"! x = sin“!
(ii)
; |x] > 1 and sin"!x = cosec-1à |x} <1x#0
sec! x= ee) |x| > 1 and cos”tx = sect, a <1x#0
“11 zl
The value of tan (2tan- 8) + sin"! 8) isequalto [JEE Main -2021]
—181
69
220
2
—291
76
151
63
@
The set of all values of k for which (tan~1x)3 + (cot"!x)? = =kn3,xER,is 7
the interval. [JEE Mains-2022]
<a A = Han! a) (cot A ars ae
Gen! at je 1G ee y) 2)
Co
Lo lea) y = Be 25 (al) RE tr), let ma
lO)
3 Ss
(8) Le a) ya ney un nt
de .
=e ES)
3 +3
3
ra (e hts 7 2)
D |
D EE TK x)
=)
&
The set of all values of k for which (tan=!x)? + (cot"!x)? = = kn?,x € R,is
the interval. [JEE Mains- ms
DEEE ie
gt (a +
I is lb tence
G2) = tea)
lo Eu 2) : ; -
32'8
D ki RAI) 2
tan”! x+y
tan-!x + tan-1y =| + tan! =,
T
== p
+y
ro Se: "| Say;
EN) Fa (a) 4485 (3) = er
x > 0,y > 0 and xy < 1(acute angle)
y $ > 0, y > 0 and. xy > 1(obtuse angle)
, x*>0y>0andxy=1
—
1
2x3)
= K+ toa.
= T- el
&
1 18
Ds da et ee ee ®
1 ten ¢ = |
nee, Ai
|— tank fang
PES) 5
6. = an B-
SES LG = Ge)
o <XtBCA
9¢ BC
ire
«+=. > v= ton" la,