REFERENCE Loisel , J., Duret , S., Cornuéjols , A., Cagnon , D., Tardet , M., Derens-Bertheau , E., & Laguerre, O. (2021). Cold chain break detection and analysis: Can machine learning help? Trends in Food Science & Technology, 112, 391-399. Lundqvist , J., De Fraiture , C., & Molden , D. (2008). Saving water: from field to fork: curbing losses and wastage in the food chain. Bustos, C. A., & Moors, E. H. (2018). Reducing post-harvest food losses through innovative collaboration: Insights from the Colombian and Mexican avocado supply chains. Journal of Cleaner Production, 199, 1020-1034. Dos Santos, S. F., Cardoso, R. D. C. V., Borges, Í. M. P., e Almeida, A. C., Andrade, E. S., Ferreira, I. O., & do Carmo Ramos, L. (2020). Post-harvest losses of fruits and vegetables in supply centers in Salvador, Brazil: Analysis of determinants, volumes and reduction strategies. Waste Management, 101, 161-170. Food Wastage Footprint (Project). (2013). Food wastage footprint: impacts on natural resources: summary report. Food & Agriculture Organization of the UN (FAO). Chavan , S., Rudrapati , R., & Manickam , S. (2022). A comprehensive review on current advances of thermal energy storage and its applications. Alexandria Engineering Journal, 61(7), 5455-5463. Bertoldi , P., & Atanasiu , B. (2007). Electricity consumption and efficiency trends in the enlarged European Union. IES–JRC. European Union.