IVE 2024 Short Course - Lecture13 - Neurotechnology for Enhanced Interaction in Immersive Environments

marknb00 121 views 48 slides Jul 21, 2024
Slide 1
Slide 1 of 48
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48

About This Presentation

IVE 2024 short course on the Psychology of XR, Lecture13 on Neurotechnology for Enhanced Interaction in Immersive Environments.

This lecture was given by Hakim Si-Mohammed on July 17th 2024 at the University of South Australia.


Slide Content

Neurotechnology for Enhanced Interaction in
Immersive Environments
Hakim Si-Mohammed
Associate Professor
Univ. Lille, CRIStAL
Brain-Computer Interfaces team
Contact:[email protected]
Universityof South Australia2024

A few wordsaboutmyself
2
Computer Science Engineer
HigherNational Schoolof Computer Engineering
Supervision: Pr. Karima Benatchba, Pr. Yacine Challal
International mobility(Academic)
Graz Universityof Technology(3 months)
Supervision : Pr. Reinhold Scherer
Internationmobility(Industrial)
Microsoft Research (3 months)
Supervision : Dr. Andrew Wilson
PhD in Computer Science (Defended12/2019)
Inria/INSA Rennes
Supervision: Dr. Anatole Lécuyer, Dr. Ferran Argelaguet,
Pr. Géry Casiez
Associate Professor
Univ. Lille
June 2016
September2018
June 2019
October2016
September2020

The Brain-Computer Interfaces team
3

Agenda
4

ResearchTopic
5
Brain-Computer Interfaces (BCIs) Immersive Environments(AR/VR)

Brain-Computer Interfaces
Part I:

What isNOT a BCI
7

Let’splaya smallgame
8

Definitions
9
Interface: noun[C] a situation, method, or place
wheretwothingscome togetherand have an
effecton eachother. [Cambridge dictionary]
A BCIisa system thattranslates measuresof brain
activityintocommandsor messages for an
interactive application
J W p w EW W p w “Brain-Computer Interfaces: principles and practice” Ox U v s y P ss 2012
F. Lotte, L. Bougrain, M. Clerc, "Electroencephalography (EEG)-based Brain-Computer Interfaces",
Wiley Encyclopedia on Electrical and Electronics Engineering, 2015

How doesa BCI actuallywork
10
M. Clerc, L. Bougrain F. “Brain-Computer Interfaces 1: Foundations and
Methods", ISTE-Wiley, 2016

Historyof brainactivitymeasurement
11

Types of brainactivitymeasurementtechniques
12

Some widelyused brainactivitymeasurementtechniques
13

Electroencephalography
14

The notion of BCI paradigm
15
1: Modulation
2: Feedback
2: Modulation
3: Feedback
1: Stimulation
1: Monitoring
2: Feedback

Active BCI paradigms
16
1: Modulation
2: Feedback

Slow Cortical Potentials
17
1: Modulation
2: Feedback

MotorImagery
18
Penfield homonculus [Penfield54]
µ (~8-12 Hz) oscillations
β (~12-30 Hz) oscillations
Pfurtscheller & Neuper “M y b - p ”
Proceedings of the IEEE, 2001
1: Modulation
2: Feedback

Motorimageryapplications
19

ReactiveBCI paradigms
20

Steady-State Visual EvokedPotentials
21
Legeny
et al. 2013
Zhu et al. 2010

P300: aka Aha! Signal
22
[Stephanieet al. 2017]
P300S peller
Farwell & Donchin “Talking off the top of your head: toward a mental prosthesis utilizing event-related brain
potentials” E p p y N p ys y 1988

Passive BCI paradigms
23
A passive BCI is a system estimating one or several mental states from
the user – without any voluntary action from this user – to adapt a
human-computer interaction accordingly
Zander, T. & Kothe . “T w s p ss v b -computer interfaces: applying brain-computer interface technology
to human- sys s ” J N E 2011

Error RelatedPotentials
24
Putze, F., Schünemann, M., Schultz, T., & Stuerzlinger, W. Automatic classification of auto-
correction errors in predictive text entry based on EEG and context information. ACM ICMI 2017
Correcting Auto-correct!

Error RelatedPotentials … For implicitcontrol
25
Zander, T. O., Krol, L. R., Birbaumer, N. P., & Gramann, K. Neuroadaptive technology enables implicit cursor
control based on medial prefrontal cortex activity. Proceedings of the National Academy of Sciences, 2016

A few toolsfor BCI development
http://openvibe.inria.fr)
https://mne.tools/
26

Virtual Environments
Part II:

Digitally created 3D immersive environment
28
[Milgram and Kishino1994]

BCIsand AR/VR
Part III:

Combining BCI and VR/AR: A land of opportunities
30

The use of SSVEP in AR/VR
Part IV:
Legeny
et al. 2013

Is itpossible to exploit an SSVEP basedBCI in AR?
32
•Si-Mohammed et al., TowardsBCI-based Interfaces for AugmentedReality: Feasibility, Design and Evaluation, IEEE TVCG, 2018

How to integrateSSVEP stimulations in the AR environment?
33
•Si-Mohammed et al., TowardsBCI-based Interfaces for AugmentedReality: Feasibility, Design and Evaluation, IEEE TVCG, 2018

Robot control system based on AR and SSVEP
34
Si-Mohammed et al., Towards BCI-based Interfaces for Augmented Reality: Feasibility, Design and Evaluation,
IEEE TVCG, 2018

Integrated AR user interface
35
Collaboration:
Si-Mohammed, et al. "DesigningFunctionalPrototypes CombiningBCI and AR for Home Automation." International Conferenceon Virtual Reality and Mixed Reality.
Springer, Cham, 2022.
F. Bouchenak

How to improvethe user friendlinessof the SSVEP stimulations?
36
Collaboration:
A. Wilson
C. Holz
Si-Mohammed, et al. "On the Effect of Size and Contrast of the SSVEP Visual Stimuations on Classification Accuracy and User-
Friendliness in Virtual Reality." Winter BCI Conference. IEEE, Seoul, 2023.

How to improvethe user friendlinessof the SSVEP stimulations?
37
Classification
accuracy
Subjective
preference

Whatif wecouldgetridof the flickeringstimulations?
38
Patent:
•Using Real-World Inspired Animations to Create Pleasant SSVEP-Based Brain-Computer Interfaces, US Patent 407846-US-NP
Collaboration:
A. Wilson

Towardsgaze independentBCIs
39
Van Den Kerchove, et al. "Correcting for ERP latency jitter improves gaze-independent BCI decoding." Journal of Neural Engineering, 2024
A. Van Den Kerchove

CharacterizingUser
Experiencein VR usingEEG
Part V:

Anomalydetectionin VR usingErrorRelatedPotentials
41
Collaboration:
R. SchererC. Lopes-Dias
Si-Mohammed, Hakim, et al. "Detectingsystem errorsin virtualreality usingEEG througherror-relatedpotentials."2020 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR). IEEE, 2020.

EEG-baseddetectionof cybersickness
42
•GENESIS: LeveraGing nEuromarkers for Next-gEneration immerSIve Systems
GENESIS

Identification of markers of Vection in VR using EEG
43
M. Naud

Conclusion and perspectives
Part III:

Towardsthe regulationof neurotechnologies
45

Open challenges
46

Summaryof the presentation
47

Thank you for your attention
Hakim Si-Mohammed
Associate Professor
Univ. Lille, CRIStAL
Brain-Computer Interfaces team
Contact:[email protected]
Universityof South Australia, 2024