Karnaugh Graph or K-Map

Sanzida161 8,506 views 32 slides Sep 06, 2015
Slide 1
Slide 1 of 32
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32

About This Presentation

Each fact and details of K-Map


Slide Content

KARNAU
GH
MAP

CONTENTS
Introduction.
Advantages of Karnaugh Maps.
SOP & POS.
Properties.
Simplification Process
Different Types of K-maps
Simplyfing logic expression by different types of K-Map
Don’t care conditions
Prime Implicants
References.

Also known as Veitch diagram or K-Map.
Invented in 1953 by
Maurice Karnaugh.
 A graphical way of
minimizing Boolean
expressions.
It consists tables of rows
and columns with entries
represent 1`s or 0`s.
Introduction

Advantages of Karnaugh Maps
Data representation’s simplicity.
Changes in neighboring variables are easily displayed
Changes Easy and Convenient to implement.
Reduces the cost and quantity of logical gates.

SOP & POS
The SOP (Sum of Product) expression represents
1’s .
SOP form such as (A.B)+(B.C).
The POS (Product of Sum) expression represents the
low (0) values in the K-Map.
POS form like (A+B).(C+D)

Properties
An n-variable K-map has 2
n
cells with n-variable truth
table value.
Adjacent cells differ
in only one bit .
Each cell refers to a
minterm or maxterm.
For minterm m
i
,
maxterm M
i
and
don’t care of f we
place 1 , 0 , x .

Simplification Process
No diagonals.
Only 2^n cells in each group.
Groups should be as large as possible.
A group can be combined if all cells of the group have
same set of variable.
Overlapping allowed.
Fewest number of groups possible.

Different Types
of
K-maps

Two Variable K-map(continued)
The K-Map is just a different form of the truth table.
V
WXF
WX
Minterm – 0001
Minterm – 1010
Minterm – 2101
Minterm – 3110
V
0 1
2 3
X
W
W
X
10
10

Two Variable K-map Grouping
V
0 0
0 0
B
A
A
Groups of One – 4
1
A B
B

Groups of Two – 2
Two Variable K-Map Groupings
Group of Four
V
0 0
0 0
B
A
A
B
1
B
1
V
1 1
1 1
B
A
A
1
B

Three Variable K-map (continued)
K-map from truth table.
WXYF
WXY
Minterm – 0000 1
Minterm – 1001 0
Minterm – 2010 0
Minterm – 3011 0
Minterm – 4100 0
Minterm – 5101 1
Minterm – 6110 1
Minterm – 7111 0
V
0 1
2 3
6 7
4 5
Y
X W
Y
1
X W
X W
X W
0
00
01
10
Only one
variable changes
for every row
cnge
12

Three Variable K-Map Groupings
V
0 0
0 0
0 0
0 0
C C
B A
B A
BA
BA
B A
1 1
B A
1 1
B A
1 1
B A
1 1
1
C A
1
1
C A
1
1
C A
1
1
C B
1
1
C B
1
1
C A
11
C B
1
1
C B
1
Groups of One – 8 (not shown)
Groups of Two – 12

Three Variable K-Map Groupings
Groups of Four – 6 Group of Eight - 1
V
1 1
1 1
1 1
1 1
C C
B A
B A
BA
BA
1
V
0 0
0 0
0 0
0 0
C C
B A
B A
BA
BA
1
C
1
1
1
1
C
1
1
1
A
1 1
1 1
B
1 1
1 1
A
1 1
1 1
B
1 1
1 1

Truth Table to K-Map Mapping
Four Variable K-Map
W X Y Z F
WXYZ
Minterm – 0 0 0 0 0 0
Minterm – 1 0 0 0 1 1
Minterm – 2 0 0 1 0 1
Minterm – 3 0 0 1 1 0
Minterm – 4 0 1 0 0 1
Minterm – 5 0 1 0 1 1
Minterm – 6 0 1 1 0 0
Minterm – 7 0 1 1 1 1
Minterm – 8 1 0 0 0 0
Minterm – 9 1 0 0 1 0
Minterm –
10
1 0 1 0 1
Minterm –
11
1 0 1 1 0
Minterm –
12
1 1 0 0 1
Minterm –
13
1 1 0 1 0
Minterm –
14
1 1 1 0 1
Minterm –
15
1 1 1 1 1
V
0 1 3 2
4 5 7 6
12 13 15 14
8 9 11 10
X W
X W
X W
X W
Z Y Z Y
ZY Z Y
1 011
1
101
0 100
0 1
10

FOUR VARIABLE K-MAP
GROUPINGS
V
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
B A
B A
BA
BA
D C D C D C D C
C B
1 1
1 1
D B
1 1
1 1
D A
1
1
1
1
C B
1 1
1 1
D B
1
1
1
1
D A
1
1
1
1 D B
11
11

FOUR VARIABLE K-MAP
GROUPINGS
Groups of Eight – 8 (two shown)
V
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
B A
B A
BA
BA
D C D C D C D C
B
1 1 1 1
1 1 1 1
D
1
1
1
1
1
1
1
1
Group of Sixteen – 1
V
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
B A
B A
BA
BA
D C D C D C D C
1

Simplyfing Logic
Expression
by
Different types of K-Map

TWO VARIABLE K-MAP
Differ in the value of y in
m0 and m1.
Differ in the value of x in
m0 and m2.
y = 0 y = 1
x = 0
m
0
= m
1
=
x = 1
m
2
=

m
3
=

yx yx
yx
yx

Two Variable K-Map
Simplified sum-of-products (SOP) logic expression for the logic
function F
1
.
V
1 1
0 0
K
J
J
K
J
JF=
1
JKF
1
001
011
100
110
20

Three Variable Maps

A three variable K-map :
yz=00 yz=01 yz=11 yz=10
x=0 m
0
m
1 m
3
m
2

x=1 m
4
m
5
m
7
m
6

Where each minterm corresponds to the product terms:
yz=00 yz=01 yz=11 yz=10
x=0
x=1
zyx zyx zyx zyx
zyx zyx zyx zyx

Four Variable K-Map
Simplified sum-of-products (SOP) logic expression for the logic
function F
3
.
T SU RU T SU S RF +++=
3
R S T U F
3
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1
V
0 1 1 0
0 1 1 1
1 0 1 1
0 1 0 0
S R
S R
S R
S R
U T U T U T U T
U R
T S
U S R
U T S

Five variable K-map is formed using two connected 4-
variable maps:
Chapter 2 - Part 2 23
23
0
1 5
4
VWX
YZ
V
Z
000001
00
13

12
011
9
8
010
X
3
2 6
7
14
15
10
11
01
11
10
Y
16
17 21
20
29

28
25
24
19
18 22
23
30
31
26
27
100101111110
W W
X
Five Variable K-Map

Don’t-care condition
Minterms that may produce either
0 or 1 for the function.
Marked with an ‘x’
in the K-map.
These don’t-care conditions can
be used to provide further simplification.

SOME YOU GROUP, SOME YOU
DON’T
V
X 0
1 0
0 0
X 0
C C
B A
B A
BA
BA
C A
This don’t care condition was treated as a
(1).
There was no advantage in treating
this don’t care condition as a (1),
thus it was treated as a (0) and not
grouped.

Don’t Care Conditions
Simplified sum-of-products (SOP) logic expression for the logic
function F
4
.
S RT RF +=
4
R S T U F
4
0 0 0 0 X
0 0 0 1 0
0 0 1 0 1
0 0 1 1 X
0 1 0 0 0
0 1 0 1 X
0 1 1 0 X
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 X
1 1 0 0 X
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
V
X 0 X 1
0 X 1 X
X 0 0 0
1 1 X 1
S R
S R
S R
S R
U T U T U T U T
T R
S R

Implicants
The group of 1s is called implicants.
Two types of Implicants:
Prime Implicants.
Essential Prime Implicants.

Prime and Essential Prime
Implicants
Chapter 2 - Part 2 28
DB
CB
11
1 1
1 1
B

D
A
11
11
1
ESSENTIAL Prime
Implicants

C

BD
CD
BD
Minterms covered by single prime implicant
DB

11
1 1
1 1
B
C
D
A
11
11
1
AD

BA

Example with don’t Care
Chapter 2 - Part 2 29
x
x
1
11
1
1
B
D
A
C
1
1
1
x
x
1
11
1
1
B
D
A
C
1
1
EssentialSelected

Besides some disadvantages like usage of
limited variables K-Map is very efficient
to simplify logic expression.
Conclusion

References
Wikipedia.com.
Digital Design by Morris Mano

Thank
You