kinds of distribution

unsiaquarian 2,955 views 38 slides Oct 17, 2019
Slide 1
Slide 1 of 38
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38

About This Presentation

kinds of distribution (statistics)


Slide Content

BY UNSA SHAKIR
DIFFERENT KINDS OF
DISTIBUTIONS

Bayes’ Theorem
Independent
Dependent

Ifdangerousfiresarerare(1%)butsmokeis
fairlycommon(10%)duetobarbecues,and
90%ofdangerousfiresmakesmokethen:
Example
Find "Probability of dangerous Fire when there
is Smoke“ using bayes theorem

P(Fire|Smoke) =P(Fire) P(Smoke|Fire)
P(Smoke)
=1% x 90%
10%
= 9%

Anentomologistspotswhatmightbea
raresubspeciesofbeetle,duetothepatternonitsback.
Intheraresubspecies,98%havethepattern,
orP(Pattern|Rare)=98%.
Inthecommonsubspecies,5%havethepattern.
orP(Pattern|common)=5%.
Theraresubspeciesaccountsforonly0.1%ofthe
population.P(Rare)=0.1%.P(common)=0.9%.
Howlikelyisthebeetlehavingthepatterntoberare,or
whatisP(Rare|Pattern)?
Example

Random variables
Arandomvariableissomenumerical
outcomesofarandomprocess
Arandomvariableisavariablewhose
valuesaredeterminedbytheoutcomeofa
randomexperiment.arandomvariableis
alsocalledachancevariable,astochastic
variableorsimplyavariate.

Random Variable
Examples of random variables:
•Let X be a random variable defined as sum of
dots when two dice are rolled. X can assumes the
values:2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
•LetYbearandomvariable,numberofheads
whenthreecoinsaretossed,thenthevaluesofY
willbe0,1,2,3

Probability Distribution:
Ifallpossiblevaluesofarandomvariable
canbewrittenalongwiththeirassociated
probabilities,thenthedistributioniscalled
probabilitydistribution.

Example
Roll a die,
Below showing the possible outcomes of
each number
x 1 2 3 4 5 6
f(x) 1/6 1/6 1/6 1/6 1/6 1/6

Example
Toss a coin twice. X= # of heads
xP(x)
0P(TT)=P(T)*P(T)=1/2*1/2=1/4
1P(TH or HT)=P(TH)+P(HT)=1/2*1/2+1/2*1/2=1/2
2P (HH)=P(H)*P(H)=1/2*1/2=1/4

Example:
LetXbearandomvariabledefinedas“Numberof
headswhentwocoinsaretossed”.Constructthe
probabilitydistributionofX.
Solution:Sample space when two coins are tossed:
S={HH,HT,TH,TT} XP(X)
01/4.
12/4.
21/4.
1

Q.LetXbearandomvariabledefinedassumofdots
whentwodicearerolled.Constructtheprobability
distributionofX
x p(x)
2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36
10 3/36
11 2/36
12 1/36

Let X be a random variable defined as the difference
between dots when two dice are rolled, then
# X: 0, 1, 2, 3, 4, 5
(6,1)
(2, 4) (3, 4) (4, 4) (5,4)
(2,5)(3, 5)(4,5)(5,5)
(2, 6) (3, 6)(4,6)(5,6)
(1,1)(2,1)(3,1)(4,1) 

(1, 2) (2, 2) (3, 2)(4, 2) (6, 2)


(1,3)(2,3)(3,3)(4,3)
(5,1)
(5,2)

(5,3)(6, 3)
S
(1, 4) (6, 4)

 
(1,5) (6,5)
 
(1,6) (6,6)
X
0
1
2
3
4
5
P(X)
6/36
10/36
8/36
6/36
4/36
2/36

Verifythatforthenumberofheadsobtainedin
fourflipsofabalancedcointheprobability
distribution
Whatistheprobabilityofobtaining2heads
fromacointhatwastossed4times?
Examples

Types of RandomVariable
•Discrete RandomVariable
•Continuous RandomVariable
Types of ProbabilityDistributions
•Discrete ProbabilityDistributions
•Continuous ProbabilityDistributions

•Discrete ProbabilityDistributions
–Binomial ProbabilityDistribution
–Poisson ProbabilityDistribution
•Continuous ProbabilityDistributions
–Normal ProbabilityDistribution
–Exponential ProbabilityDistribution

Binomial Probabilitydistribution
Anexperimentissaidtobebinomialifitpossesses
thefollowingfourproperties
•Thereareonlytwopossibleoutcomes“Success”
and“Failure”
•Theprobabilityofsuccessdenotedbypremains
constantthroughoutthetrials
•Numberoftrialsarefixed
•Trialsareindependent

•P(Success)=p.
•P(Failure)=q=1-p.
•nindicatesthefixednumberoftrials.
•pindicatestheprobabilityofsuccessfor
anyonetrial.
•qindicatestheprobabilityoffailure(not
success)foranyonetrial.

What is P(x) for binomial?xnx
qp
xnx
n
xP



)!(!
!
)(
Where
p: probability ofsuccess
q: probability offailure
n: number oftrials
x: number ofsuccesses

??????(�) = ??????
??????
�
�
1 − �
??????−�
= ??????
??????
�
�
�
??????−�
�ℎ??????�??????�= 0, 1, 2,⋯, ??????

Afaircoinistossed7times.
Findtheprobabilitiesofobtainingvarious
numbersofheads.
•n=7
•p=probability of appearinghead=1/2
•q=1-p=1-1/2=1/2
•X = 0,1,2,3,4,5,6,7
Example:

Solution:

Normal Approximation
Forlargen,thebinomialdistributioncan
beapproximatedbythenormal,is
approximatelystandardnormalforlarge
n.npq
npX
Z

Example
SupposeXisabinomialrandomvariable
withn=100andp=0.3.EstimateP(X=40)
byusingthenormalapproximation.

Poisson distribution
Eventshappenindependentlyintimeor
spacewith,onaverage,λeventsperunittime
orspace.
Radioactivedecay
λ=2particlesperminute
Lighteningstrikes
λ=0.01strikesperacre

Poisson probabilities
Under perfectly random occurrences it can be
shown that mathematically
Eventhappenindependentlyintimeorspacewith,
onaverage,λeventsperunitorspace( ) , x=0, 1, 2, ...
!
x
e
fx
x



Example
Radioactive decay
x= 3 # of particles/min
λ=2 particles per minutes32
2
( 3) , x=0, 1, 2, ...
3!
e
Px



Example
Radioactive decay
X=# of particles/hour
λ=2 particles/min * 60min/hour=120 particles/hr125 120
120
( 125) , x=0, 1, 2, ...
125!
e
Px



Exercise
Amailroomclerkissupposedtosend6of15
packagestoEuropebyairmail,buthegets
themallmixedupandrandomlyputsairmail
postageon6ofthepackages.Whatisthe
probabilitythatonlythreeofthepackages
thataresupposedtogobyairgetairmail
postage?

Exercise
Amonganambulanceservice’s16
ambulances,fiveemitexcessiveamountsof
pollutants.Ifeightoftheambulancesare
randomlypickedforinspection,whatisthe
probabilitythatthissamplewillincludeat
leastthreeoftheambulancesthatemit
excessiveamountsofpollutants?

Exercise
Thenumberofmonthlybreakdownsofthekindof
computerusedbyanofficeisarandomvariable
havingthePoissondistributionwithλ=1.6.Findthe
probabilitiesthatthiskindofcomputerwill
functionforamonth
Withoutabreakdown;
Withonebreakdown;
Withtwobreakdowns.
Tags