kmaps

unsiaquarian 587 views 54 slides Oct 16, 2019
Slide 1
Slide 1 of 54
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54

About This Presentation

k-maps


Slide Content

K -m a p s BY UNSA SHAKIR

Example Minimize the following Boolean function using sum of products (SOP): f(a,b,c,d) =  m (3,7,11,12,13,14,15) abcd 3 0011 a`b`cd 7 0111 a`bcd 11 1011 ab`cd 12 1100 abc`d` 13 1101 abc`d 14 1110 abcd` 15 1111 abcd

E x a mpl e f(a,b,c,d) =  m (3,7,11,12,13,14,15 ) =a`b`cd + a`bcd + ab`cd + abc`d`+ abc`d + abcd` + abcd =cd(a`b` + a`b + ab`) + ab(c`d` + c`d + cd` + cd ) =cd(a`[b` + b] + ab`) + ab(c`[d` + d] + c[d` + d]) =cd(a`[1] + ab`) + ab(c`[1] + c[1]) =ab+ab`cd + a `cd =ab+cd(ab` + a `) =ab+ cd(a + a `)( a `+b`) = a b + a `cd + b`cd = a b +cd( a ` + b`)

E x a mpl e Maximize the following Boolean function using product of sum (POS): f(a,b,c,d) =  M (0,1,2,4,5,6,8,9,10 ) =  m (3,7,11,12,13,14,15 ) =[(a+b+c+d)(a+b+c+d`)(a+b`+c`+d`) (a`+b+c`+d`)(a`+b`+ c+d )(a`+b`+ c+ d `) (a`+b`+c`+d)(a`+b`+c`+d`)]

Karnaugh Maps (K-maps) Karnaugh maps -- A tool for representing Boolean functions of up to six variables . K-maps are tables of rows and columns with entries represent 1`s or 0`s of SOP and POS representations respectively.

Karnaugh Maps (K-maps) An n- variable K-map has 2 n cells with each cell corresponding to an n- variable truth table value. K-map cells are labeled with the corresponding truth-table row. K-map cells are arranged such that adjacent cells correspond to truth rows that differ in only one bit position ( logical adjacency ).

Karnaugh Maps (K-maps) If m i is a minterm of f, then place a 1 in cell i of the K-map . If M i is a maxterm of f , then place a 0 in cell i. If d i is a don’t care of f, then place a d or x in cell i.

E x am p l e s Two variable K-map f(A,B)=  m (0,1,3)=A`B`+A`B+AB 1 1 1 A 0 1 B 0 1

Three variable map f(A,B,C) =  m (0,3,5 )= A`B`C `+A`BC+AB`C A`B` 0 0 A`B 0 1 A B 1 1 A B` 1 0 1 A`B`C’ ` ` 1 A`BC 1 AB`C C 1 C’ 0

Maxterm example A`B` A`B AB AB` C` C (A+B) (A+B ` ) (A ` +B `) (A ` +B) C C` f(A,B,C ) =  M (1,2,4,6,7) =(A+B+C`)(A+B`+C)(A`+B+C) )(A`+B`+C) (A`+B`+C `)

Four variable example (a) Minterm form. (b) Maxterm form. f(a,b,Q,G ) =  m (0,3,5,7,10,11,12,13,14,15) =  M (1,2,4,6,8,9)

Simplification of Boolean Functions Using K-maps K-map cells that are physically adjacent are also logically adjacent. Also, cells on an edge of a K-map are logically adjacent to cells on the opposite edge of the map. If two logically adjacent cells both contain logical 1s, the two cells can be combined to eliminate the variable that has value 1 in one cell’s label and value 0 in the other.

Use the rules of simplification and ‘ringing of adjacent cells’ in order to make as many variables redundant.

Karnaugh Mapping - Another Worked Z f A , B , C A . B B . C B . C A . B . C

Example Simplify f= A ` BC `+ A B C `+ A B C using ; (a) Sum of minterms. (b) Maxterms. Each cell of an n- variable K-map has n logically adjacent cells. C AB 10 0 2 6 4 1 3 7 5 1 B C C AB 00 11 1 1 11 2 6 4 1 3 7 5 1 C A A B AB BC 01 1 1 1 a - b- f(A,B,C) = AB + BC  f(A,B,C) = B(A + C  )

Example Simplify CD AB 00 01 11 00 01 11 10 D C AB 1 C D 1 11 10 00 01 11 10 D A A C B ( a ) B ( b ) CD AB 00 01 11 10 00 01 11 10 D A C CD AB 00 01 11 10 4 12 8 1 5 13 9 3 7 15 11 2 6 14 10 00 01 11 10 D A C B ( c ) B ( d ) 1 1 1 1 1 1 1 1 1 4 1 12 8 1 1 5 1 13 1 9 3 1 7 1 15 1 11 2 1 6 14 10 1 4 1 12 8 1 1 5 1 13 1 9 3 1 7 1 15 1 11 2 1 6 14 10 1 4 1 12 8 1 1 5 1 13 1 9 3 1 7 1 15 1 11 2 1 6 14 10 1 f(A,B,C,D) =  m (2,3,4,5,7,8,10,13,15)

Example Redundant selections f(A,B,C,D) =  m (0,5,7,8,10,12,14,15) 1 1 1 CD AB 00 01 11 10 00 01 11 10 D A C CD AB 00 01 11 10 4 12 8 1 5 13 9 3 7 15 11 2 6 14 10 01 11 10 D A C B ( a ) B (b) CD AB 00 01 11 10 4 12 8 1 5 13 9 3 7 15 11 2 6 14 10 00 01 11 10 D A C CD AB 00 01 11 10 4 12 8 1 5 13 9 3 7 15 11 2 6 14 10 00 01 11 10 D A C B ( c ) B (d) 1 1 1 1 1 1 4 12 1 8 1 1 5 1 13 9 3 7 1 15 1 11 2 6 14 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E x a m p l e

E x a m p l e

E x a m p l e

Example

Condition A Condition B Condition C

The output of the circuit can be expressed as f = AB + AC + BC

The output of the circuit can be expressed as f = AB + AC + BC

The output of the circuit can be expressed as f = AB + AC + BC

Finally, w e get

Minterms that may produce either 0 or 1 for the function. They are marked with an ´ in the K-map. This happens, for example, when we don’t input certain minterms to the Boolean function. These don’t-care conditions can be used to provide further simplification of the algebraic expression. (Example) F = A`B`C`+A`BC` + ABC` d=A`B`C +A`BC + AB`C F = A` + BC` Don’t-care condition

Example Design the minimum-cost SOP and POS expression for the function f(x 1 , x 2 , x 3 , x 4 ) = Σ m(4, 6, 8, 10, 11, 12, 15) + D(3, 5, 7, 9)

Let ’ s Use a K-Map f(x 1 , x 2 , x 3 , x 4 ) = Σ m(4, 6, 8, 10, 11, 12, 15) + D(3, 5, 7, 9)

f(x 1 , x 2 , x 3 , x 4 ) = Σ m(4, 6, 8, 10, 11, 12, 15) + D(3, 5, 7, 9) 1 d d d 1 1 1 d 1 1 1

The SOP Expression

What about the POS Expression? f(x 1 , x 2 , x 3 , x 4 ) = Σ m(4, 6, 8, 10, 11, 12, 15) + D(3, 5, 7, 9) 1 d d d 1 1 1 d 1 1 1

The POS Expression

Example Use K-maps to find the minimum-cost SOP and POS expression for the function

Let ’ s map the expression to the K-Map

d d d

d d d

The SOP Expression

What about the POS Expression? 1 1 1 1 1 d 1 d 1 d 1

The POS Expression

Example Derive the minimum-cost SOP expression for

First, expand the expression

Construct the K-Map for this expression s 1 s 2 s 3 s 1 s 2 s 3

More Examples f 1 (x, y, z) = ∑ m(2,3,5,7) f 2 (x, y, z) = ∑ m (0,1,2,3,6) f 1 (x, y, z) = x’y + xz f 2 (x, y, z) = x’+yz’ yz X 00 01 11 10 1 1 1 1 1 1 1 1 1 1 x yz

Example Simplify the following Boolean function (A,B,C,D) = ∑ m(0,1,2,4,5,7,8,9,10,12,13). cd ab 1 1 1 1 1 1 1 1 1 1 1 g(A,B,C,D) = c’+b’d’+a’bd 1 1 1 1 1 1 1 1 1 1 1

Example Simplify the function f(a,b,c,d) whose K-map is shown at the right. f = a’c’d+ab’+cd’+a’bc’ or f = a’c’d+ab’+cd’+a’bd’ x x 1 1 x x 1 1 1 1 1 x x 1 1 x x 1 1 1 1 1 1 1 1 1 1 x x 1 1 x x ab cd 00 01 11 10 00 01 11 10

Another Example Simplify the function g(a,b,c,d) whose K-map is shown at right. g = a’c’+ ab or g = a’c’+b’d x 1 1 x x 1 x x 1 x x x 1 1 x x 1 x x 1 x x x 1 1 x x 1 x x 1 x x ab cd
Tags