Lcms gcms and its applications

5,276 views 24 slides Jun 11, 2015
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

an overview of lcms and gcms and its applications....
LC-MS:
It is the combination of liquid chromatography and the mass spectrometry.
* In LC-MS we are removing the detector from the column of LC and fitting the column to interface of MS.
* In the most of the cases the interface used in LC...


Slide Content

AN OVERVIEW OF LC-MS AND GC-MS ITS APPLICATION SUBMITTED BY NIHAL . P FIRST YEAR M.PHARM NATIONAL COLLEGE OF PHARMACY UNDER GUIDENCE OF PROFF.KATHIRVEL 1

* It is the combination of liquid chromatography and the mass spectrometry. * In LC-MS we are removing the detector from the column of LC and fitting the column to interface of MS. * In the most of the cases the interface used in LC-MS are ionization source LC-MS: 2

PARTS OF LC-MS 3

INTERFACE Apart from being an inlet system for the MS, an LC–MS interface is also the coupling of a detector (MS) to a chromatograph. The choice of LC–MS interface strongly influences the characteristics of the MS as a detector for LC. Therefore, we should keep in mind what characteristics are ideal for an LC detector 4

1. Direct liquid introduction (DLI): The DLI interface was developed in order to solve the problems with in-capillary evaporation in the capillary inlet. In a DLI interface, the column effluent is nebulized by the disintegration into small droplets of a liquid jet formed at a small diaphragm After desolvation of the droplets in a desolvation chamber, the analytes can be analysed using solvent-mediated CI with the LC solvents as the reagent gas. 5

Advantages: • No heat is applied to the interface and it is therefore able to deal with thermally labile materials better than the moving-belt interface. • The interface contains no moving parts and is cheap and simple to construct and operate and is inherently more reliable than the moving-belt interface. • Both positive- and negative-ion CI spectra can be generated and the interface provides molecular weight information, plus it can also be used for sensitive quantitative and semi-quantitative procedures. Disadvantages : • Involatile compounds are not usually ionized with good efficiency. • The pinhole is prone to blockage and therefore the system must be kept completely free of solid materials. • Only a small proportion of the flow from a conventional HPLC column is able to enter the source of the mass spectrometer and sensitivity is consequently low . 6

2. Moving belt/wire : In a moving-belt interface (MBI), the column effluent is deposited onto an endless moving belt from which the solvent is evaporated by means of gentle heating and efficiently exhausting the solvent vapours . After removal of the solvents, the analyte molecules are (thermally) desorbed from the belt into the ion source and mass analysed . The MBI for LC.MS was used in a wide variety of applications, including the analysis of drugs and their metabolites, pesticides, steroids, alkaloids, polycyclic, aromatic hydrocarbons and others. 7

Advantages: • The interface can be used with a wide range of HPLC conditions. • The analyst does have some choice of the ionization method to be used; EI, CI and FAB are available, subject to certain limitations, and thus both molecular weight and structural information may be obtained from the analyte (s) under investigation. Disadvantages: • An intense chemical background from the material from which the belt was made is often observed in the mass spectra generated by this type of interface unless adequate conditioning is carried out. • The belt is prone to break during operation. • Problems may be encountered in the analysis of thermally labile compounds, as heat is required for mobile-phase removal and for the transfer of analyte from the belt into the source of the mass spectrometer, and highly involatile compounds which cannot be desorbed from the belt, unless FAB is used for ionization. 8

3. Thermospray (TSP): They are of 2 type: a) Real-TSP ionization b) Discharge electrode for external ionization and repeller electrode 9

In a thermospray (TSP) interface, a jet of vapour and small droplets is formed out of a heated vaporizer tube into a low-pressure region. Nebulization takes place as a result of the disruption of the liquid by the expanding vapour that is formed upon evaporation of part of the liquid in the tube. Before the onset of the partial inside-tube evaporation a considerable amount of heat is transferred to the solvent, which assists in the desolvation of the droplets in the low pressure region. By applying efficient pumping directly at the ion source up to 2 ml/min of aqueous solvents can be introduced into the MS vacuum system. The ionization of the analytes takes place by means of ion-molecule reactions and ion evaporation processes. 10

4. Partical beam (PB): During the desolvation of the droplets, the less volatile analyte molecules coagulate into small particles, typically 50-300nm. The solvent vapour and nebulization gas are separated from the particles by means of molecular-beam technology. The mixture is expanded at a nozzle into a vacuum chamber. The low mass solvent molecules show a greater tendency to diffuse away from the centre of the expansion, while the heavier analyte particles are kept in the core of the vapour jet. The core of the jet is then sampled by a skimmer. The region between the first set of orifices is maintained at between 2 and 10 torr , and that between the second set between 0.1 and 1 torr . In the momentum separator, sufficient pressure reduction is achieved to generate EI and solvent-independent CI mass spectra. 11

5. Atmospheric pressure chemical ionization (APCI) Here, the HPLC effluent is passed through a pneumatic nebulizer where the droplets are both generated and desolvated . The spray so formed then passes through a heated region where the vapour is dried. The neutral species thus produced are then passed through a corona discharge – the latter occurs when the field at the tip of the electrode is sufficiently high to ionize the gas surrounding it but insufficiently high to cause spark – where ionization of the analyte is effected by CI-type processes with the vaporized solvent acting as the reagent gas. The technique is capable of dealing with flow rates between 0.5 - 2 ml/min, so making it directly compatible with 4.6 mm columns, and is much more tolerant to a range of buffers. 12

6. Conti. Flow fast atom bombardment ( cf -FAB) In a continuous-flow fast-atom bombardment ( Cf -FAB) interface, typically a 5-15 µl/min liquid stream, mixed with 5% glycerol (or) thioglycerol (or) nitrobenzyl alcohol as FAB matrix, flows through a narrow-bore fused-silica capillary towards either a stainless-steel frit or a ( goldplated ) FAB target. At the target or frit, a uniform liquid film is formed due to a subtle balance between solvent evaporation and solvent delivery. Ions are generated by bombardment of the liquid film by fast atoms or ions, common to FAB. The fast atom like Ar or Xe is used for bombarding the sample and ions are sputtered out of the solution and enters into MS. 13

Appplication of LC-MS Molecular weight determination Determining the molecular weight of green fluorescent proteins Structural determination e.g. structural determination of ginsenoside. Pharmaceutical application e.g. identification of bile acids metabolites. Biochemical application e.g. rapid protein identification using capillary lc/ms/ms. 14

Food application e.g. identification of aflatoxin in food determination of vitamin D 3 in poultry feed supplement using MS 3 Environmental application e.g. detection of phenyl urea herbicides, detection of low level of carbaryl in food. 15

The sample solution is injected into the GC inlet where it is vaporized and swept onto a chromatographic column by the carrier gas (usually helium). The sample flows through the column and the compounds comprising the mixture of interest are separated by interaction with the coating of the column (stationary phase) and the carrier gas (mobile phase ). The latter part of the column passes through a heated transfer line and ends at the entrance to ion source where compounds eluting from the column are converted to ions. PRINCIPLE OF GC-MS 16

Components The GC-MS is composed of two major building blocks: the  gas chromatograph and the  mass spectrometer . Carrier Gas, N 2 or He, 1-2 mL /min Injector Oven Column Detector 17

18

Jet Separator Two capillary tubes aligned with a small space between them. (1 mm) A vacuum is created between the two tubes using a rotary pump. The GC effluent enters the vacuum region, those molecules which continue in the same direction enter the second capillary tube and continue to the ion source. 19

The carrier gas molecules are more easily diverted from the linear path by collisions. The analyte molecules are much larger and carry more momentum. The surface of the separator must be inactive and a reasonably even temperature. 20

Jet Separator 21

Applications Environmental Monitoring and Cleanup GC-MS is becoming the tool of choice for tracking organic pollutants in the environment. GC-MS can analyze the particles from a human body in order to help link a criminal to a crime. The analysis of fire debris using GC-MS is well established, and there is even an established American Society for Testing Materials (ASTM) standard for fire debris analysis. Criminal forensic 22

References 1) PHARMACEUTICAL CHEMISTRY 4 TH EDITION ,EDITED BY AH BECKETT AND JB STENLAKE. 2) GAS CHROMATOGRAPHY-MASS SPECTROSCOPY FROM WIKIPEDIA , THE FREE ENCYCLOPEDIA. 23

24
Tags