SlidePub
Home
Categories
Login
Register
Home
Technology
Lección 10 ejemplos forma controlador.pdf
Lección 10 ejemplos forma controlador.pdf
victordiazgarcia3
11 views
23 slides
Sep 16, 2025
Slide
1
of 23
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
About This Presentation
Lineales
Size:
83.07 KB
Language:
en
Added:
Sep 16, 2025
Slides:
23 pages
Slide Content
Slide 1
Example ˙x1=x2,˙x2=−x1+ε(1−x
2
1
)x2+u, y=x1, ε >0
˙y= ˙x1=x2
¨y= ˙x2=−x1+ε(1−x
2
1
)x2+u
Relativedegree
= 2
over
R
2
Example ˙x1=x2,˙x2=−x1+ε(1−x
2
1
)x2+u, y=x2, ε >0
˙y= ˙x2=−x1+ε(1−x
2
1
)x2+u
Relativedegree
= 1
over
R
2
p. 5/17
Slide 2
Example ˙x1=x2,˙x2=−x1+ε(1−x
2
1
)x2+u, y=x1+x
2
2
, ε >0
˙y=x2+2x2[−x1+ε(1−x
2
1
)x2+u]
Relativedegree
= 1
over
{x26= 0}
Example:
Field-controlledDCmotor
˙x1=−ax1+u,˙x2=−bx2+k−cx1x3,˙x3=θx1x2, y=x3
a
,
b
,
c
,
k
,and
θ
arepositiveconstants
˙y= ˙x3=θx1x2
¨y=θx1˙x2+θ˙x1x2= ()+θx2u
Relativedegree
= 2
over
{x26= 0}
p. 6/17
Slide 3
Example
˙x1=x2,˙x2=−x1+ε(1−x
2
1
)x2+u, y=x2
˙y= ˙x2=−x1+ε(1−x
2
1
)x2+u⇒ρ= 1
y(t)≡0⇒x2(t)≡0⇒˙x1= 0
Non-minimumphase
p. 14/17
Slide 4
Example
˙x1=−x1+
2+x
2
3
1+x
2
3
u,˙x2=x3,˙x3=x1x3+u, y=x2
˙y= ˙x2=x3
¨y= ˙x3=x1x3+u⇒ρ= 2
γ=LgLfh(x) = 1, α=−
L
2
f
h(x)
LgLfh(x)
=−x1x3
Z
∗
={x2=x3= 0}
u=u
∗
(x) = 0⇒˙x1=−x1
Minimumphase
p. 15/17
Slide 5
Find
φ(x)
suchthat
φ(0) = 0,
∂φ
∂x
g(x) =
h
∂φ
∂x
1
,
∂φ
∂x
2
,
∂φ
∂x
3
i
2+x
2
3
1+x
2
3
0
1
= 0
and
T(x) =
h
φ(x)x2x3
i
T
isadiffeomorphism
∂φ
∂x1
2+x
2
3
1+x
2
3
+
∂φ
∂x3
= 0
φ(x) =−x1+x3+tan
−1
x3
p. 16/17
Slide 6
T(x) =
h
−x1+x3+tan
−1
x3, x2, x3
i
T
isaglobaldiffeomorphism
η=−x1+x3+tan
−1
x3, ξ1=x2, ξ2=x3
˙η=
−
−η+ξ2+tan
−1
ξ2
1+
2+ξ
2
2
1+ξ
2
2
ξ2
!
˙
ξ1=ξ2
˙
ξ2=
−
−η+ξ2+tan
−1
ξ2
ξ2+u
y=ξ1
p. 17/17
Slide 7
Denition:
Anonlinearsystemisinthecontrollerformif
˙x=Ax+Bγ(x)[u−α(x)]
where(A,B)iscontrollableandγ(x)isanonsingular
u=α(x)+γ
−1
(x)v⇒˙x=Ax+Bv
Then-dimensionalsingle-input(SI)system
˙x=f(x)+g(x)u
canbetransformedintothecontrollerformif∃h(x)s.t.
˙x=f(x)+g(x)u, y=h(x)
hasrelativedegreen.
Why?
p. 2/18
Slide 8
Transformthesystemintothenormalform
˙z=Acz+Bcγ(z)[u−α(z)], y=Ccz
Ontheotherhand,ifthereisachangeofvariables
ζ=S(x)thattransformstheSIsystem
˙x=f(x)+g(x)u
intothecontrollerform
˙
ζ=Aζ+Bγ(ζ)[u−α(ζ)]
thenthereisafunctionh(x)suchthatthesystem
˙x=f(x)+g(x)u, y=h(x)
hasrelativedegreen.
Why?
p. 3/18
Slide 9
Foranycontrollablepair(A,B),wecanndanonsingular
matrixMthattransforms(A,B)intoacontrollable
canonicalform:
MAM
−1
=Ac+Bcλ
T
, MB=Bc
z=Mζ=MS(x)
def
=T(x)
˙z=Acz+Bcγ(∆)[u−α(∆)]
h(x) =T1(x)
p. 4/18
Slide 10
Insummary,then-dimensionalSIsystem
˙x=f(x)+g(x)u
istransformableintothecontrollerformifandonlyif∃h(x)
suchthat
˙x=f(x)+g(x)u, y=h(x)
hasrelativedegreen
Searchforasmoothfunctionh(x)suchthat
LgL
i−1
f
h(x) = 0, i= 1,2,...,n−1,andLgL
n−1
f
h(x)6= 0
T(x) =
h
h(x), Lfh(x),∆∆∆L
n−1
f
h(x)
i
p. 5/18
Slide 11
TheLieBracket:
Fortwovectoreldsfandg,theLie
bracket[f,g]isathirdvectorelddenedby
[f,g](x) =
∂g
∂x
f(x)−
∂f
∂x
g(x)
Notation:
ad
0
f
g(x) =g(x), adfg(x) = [f,g](x)
ad
k
f
g(x) = [f,ad
k−1
f
g](x), k≥1
Properties:
[f,g] =−[g,f] Forconstantvectoreldsfandg,[f,g] = 0
p. 6/18
Slide 12
Example
f=
"
x2
−sinx1−x2
#
, g=
"
0
x1
#
[f,g] =
"
0 0
1 0
# "
x2
−sinx1−x2
#
−
"
0 1
−cosx1−1
# "
0
x1
#
adfg= [f,g] =
"
−x1
x1+x2
#
p. 7/18
Slide 13
f=
"
x2
−sinx1−x2
#
, adfg=
"
−x1
x1+x2
#
ad
2
f
g= [f,adfg] =
"
−1 0
1 1
# "
x2
−sinx1−x2
#
−
"
0 1
−cosx1−1
# "
−x1
x1+x2
#
=
"
−x1−2x2
x1+x2−sinx1−x1cosx1
#
p. 8/18
Slide 14
Distribution:
Forvectoreldsf1,f2,...,fkonD⊂R
n
,let
∆(x) = span{f1(x),f2(x),...,fk(x)}
Thecollectionofallvectorspaces∆(x)forx∈Discalled
adistributionandreferredtoby
∆ = span{f1,f2,...,fk}
Ifdim(∆(x)) =kforallx∈D,wesaythat∆isa
nonsingulardistributiononD,generatedbyf1,...,fk
Adistribution∆is
involutive
if
g1∈∆ andg2∈∆⇒[g1,g2]∈∆
p. 9/18
Slide 15
Lemma:
If∆isanonsingulardistribution,generatedby
f1,...,fk,thenitisinvolutiveifandonlyif
[fi,fj]∈∆,∀1≤i,j≤k
Example:
D=R
3
;∆ = span{f1,f2}
f1=
2x2
1
0
, f2=
1
0
x2
,dim(∆(x)) = 2,∀x∈D
[f1,f2] =
∂f2
∂x
f1−
∂f1
∂x
f2=
0
0
1
p. 10/18
Slide 16
rank[f1(x),f2(x),[f1,f2](x)] =
rank
2x21 0
1 0 0
0x21
= 3,∀x∈D
∆isnotinvolutive
p. 11/18
Slide 17
Example:
D={x∈R
3
|x
2
1
+x
2
3
6= 0};∆ = span{f1,f2}
f1=
2x3
−1
0
, f2=
−x1
−2x2
x3
,dim(∆(x)) = 2,∀x∈D
[f1,f2] =
∂f2
∂x
f1−
∂f1
∂x
f2=
−4x3
2
0
rank
2x3−x1−4x3
−1−2x22
0x30
= 2,∀x∈D
∆isinvolutive
p. 12/18
Slide 18
Theorem:
Then-dimensionalSIsystem
˙x=f(x)+g(x)u
istransformableintothecontrollerform
ifandonlyif
thereis
adomainD0suchthat
rank[g(x),adfg(x),...,ad
n−1
f
g(x)] =n,∀x∈D0
and
span{g,adfg,...,ad
n−2
f
g}isinvolutiveinD0
p. 13/18
Slide 19
Example
˙x=
"
asinx2
−x
2
1
#
+
"
0
1
#
u
adfg= [f,g] =−
∂f
∂x
g=
"
−acosx2
0
#
[g(x),adfg(x)] =
"
0−acosx2
1 0
#
rank[g(x),adfg(x)] = 2,∀xsuchthatcosx26= 0
span{g}isinvolutive
FindhsuchthatLgh(x) = 0,andLgLfh(x)6= 0
p. 14/18
Slide 20
∂h ∂x
g=
∂h
∂x2
= 0⇒hisindependentofx2
Lfh(x) =
∂h
∂x1
asinx2
LgLfh(x) =
∂(Lfh)
∂x
g=
∂(Lfh)
∂x2
=
∂h
∂x1
acosx2
LgLfh(x)6= 0inD0={x∈R
2
|cosx26= 0}if
∂h
∂x1
6= 0
Takeh(x) =x1⇒T(x) =
"
h
Lfh
#
=
"
x1
asinx2
#
p. 15/18
Slide 21
Example(Field-ControlledDCMotor)
˙x=
−ax1
−bx2+k−cx1x3
θx1x2
+
1
0
0
u
adfg=
a
cx3
−θx2
;ad
2
f
g=
a
2
(a+b)cx3
(b−a)θx2−θk
[g(x),adfg(x),ad
2
f
g(x)] =
1a a
2
0cx3(a+b)cx3
0−θx2(b−a)θx2−θk
p. 16/18
Slide 22
det[∆] =cθ(−k+2bx2)x3
rank[∆] = 3forx26=k/2bandx36= 0
span{g,adfg}isinvolutiveif[g,adfg]∈span{g,adfg}
[g,adfg] =
∂(adfg)
∂x
g=
0 0 0
0 0c
0−θ0
1
0
0
=
0
0
0
⇒span{g,adfg}isinvolutive
D0={x∈R
3
|x2>
k
2b
andx3>0}
FindhsuchthatLgh(x) =LgLfh(x) = 0;LgL
2
f
h(x)6= 0
p. 17/18
Slide 23
x
∗
= [0,k/b,ω0]
T
, h(x
∗
) = 0
∂h
∂x
g=
∂h
∂x1
= 0⇒hisindependentofx1
Lfh(x) =
∂h
∂x2
[−bx2+k−cx1x3]+
∂h
∂x3
θx1x2
[∂(Lfh)/∂x]g= 0⇒cx3
∂h
∂x2
=θx2
∂h
∂x3
h=c1[θx
2
2
+cx
2
3
]+c2, LgL
2
f
h(x) =−2c1cθ(k−2bx2)x3
h(x
∗
) =c1[θ(k/b)
2
+cω
2
0
]+c2
c1= 1, c2=−θ(k/b)
2
−cω
2
0
p. 18/18
Tags
Categories
Technology
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
11
Slides
23
Age
81 days
Related Slideshows
11
8-top-ai-courses-for-customer-support-representatives-in-2025.pptx
JeroenErne2
52 views
10
7-essential-ai-courses-for-call-center-supervisors-in-2025.pptx
JeroenErne2
49 views
13
25-essential-ai-courses-for-user-support-specialists-in-2025.pptx
JeroenErne2
39 views
11
8-essential-ai-courses-for-insurance-customer-service-representatives-in-2025.pptx
JeroenErne2
38 views
21
Know for Certain
DaveSinNM
24 views
17
PPT OPD LES 3ertt4t4tqqqe23e3e3rq2qq232.pptx
novasedanayoga46
27 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-23)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better