Lección 10 ejemplos forma controlador.pdf

victordiazgarcia3 11 views 23 slides Sep 16, 2025
Slide 1
Slide 1 of 23
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23

About This Presentation

Lineales


Slide Content

Example ˙x1=x2,˙x2=−x1+ε(1−x
2
1
)x2+u, y=x1, ε >0
˙y= ˙x1=x2
¨y= ˙x2=−x1+ε(1−x
2
1
)x2+u
Relativedegree
= 2
over
R
2
Example ˙x1=x2,˙x2=−x1+ε(1−x
2
1
)x2+u, y=x2, ε >0
˙y= ˙x2=−x1+ε(1−x
2
1
)x2+u
Relativedegree
= 1
over
R
2
– p. 5/17

Example ˙x1=x2,˙x2=−x1+ε(1−x
2
1
)x2+u, y=x1+x
2
2
, ε >0
˙y=x2+2x2[−x1+ε(1−x
2
1
)x2+u]
Relativedegree
= 1
over
{x26= 0}
Example:
Field-controlledDCmotor
˙x1=−ax1+u,˙x2=−bx2+k−cx1x3,˙x3=θx1x2, y=x3
a
,
b
,
c
,
k
,and
θ
arepositiveconstants
˙y= ˙x3=θx1x2
¨y=θx1˙x2+θ˙x1x2= ()+θx2u
Relativedegree
= 2
over
{x26= 0}
– p. 6/17

Example
˙x1=x2,˙x2=−x1+ε(1−x
2
1
)x2+u, y=x2
˙y= ˙x2=−x1+ε(1−x
2
1
)x2+u⇒ρ= 1
y(t)≡0⇒x2(t)≡0⇒˙x1= 0
Non-minimumphase
– p. 14/17

Example
˙x1=−x1+
2+x
2
3
1+x
2
3
u,˙x2=x3,˙x3=x1x3+u, y=x2
˙y= ˙x2=x3
¨y= ˙x3=x1x3+u⇒ρ= 2
γ=LgLfh(x) = 1, α=−
L
2
f
h(x)
LgLfh(x)
=−x1x3
Z

={x2=x3= 0}
u=u

(x) = 0⇒˙x1=−x1
Minimumphase
– p. 15/17

Find
φ(x)
suchthat
φ(0) = 0,
∂φ
∂x
g(x) =
h
∂φ
∂x
1
,
∂φ
∂x
2
,
∂φ
∂x
3
i



2+x
2
3
1+x
2
3
0
1


= 0
and
T(x) =
h
φ(x)x2x3
i
T
isadiffeomorphism
∂φ
∂x1

2+x
2
3
1+x
2
3
+
∂φ
∂x3
= 0
φ(x) =−x1+x3+tan
−1
x3
– p. 16/17

T(x) =
h
−x1+x3+tan
−1
x3, x2, x3
i
T
isaglobaldiffeomorphism
η=−x1+x3+tan
−1
x3, ξ1=x2, ξ2=x3
˙η=

−η+ξ2+tan
−1
ξ2


1+
2+ξ
2
2
1+ξ
2
2
ξ2
!
˙
ξ1=ξ2
˙
ξ2=

−η+ξ2+tan
−1
ξ2

ξ2+u
y=ξ1
– p. 17/17

Denition:
Anonlinearsystemisinthecontrollerformif
˙x=Ax+Bγ(x)[u−α(x)]
where(A,B)iscontrollableandγ(x)isanonsingular
u=α(x)+γ
−1
(x)v⇒˙x=Ax+Bv
Then-dimensionalsingle-input(SI)system
˙x=f(x)+g(x)u
canbetransformedintothecontrollerformif∃h(x)s.t.
˙x=f(x)+g(x)u, y=h(x)
hasrelativedegreen.
Why?
– p. 2/18

Transformthesystemintothenormalform
˙z=Acz+Bcγ(z)[u−α(z)], y=Ccz
Ontheotherhand,ifthereisachangeofvariables
ζ=S(x)thattransformstheSIsystem
˙x=f(x)+g(x)u
intothecontrollerform
˙
ζ=Aζ+Bγ(ζ)[u−α(ζ)]
thenthereisafunctionh(x)suchthatthesystem
˙x=f(x)+g(x)u, y=h(x)
hasrelativedegreen.
Why?
– p. 3/18

Foranycontrollablepair(A,B),wecanndanonsingular
matrixMthattransforms(A,B)intoacontrollable
canonicalform:
MAM
−1
=Ac+Bcλ
T
, MB=Bc
z=Mζ=MS(x)
def
=T(x)
˙z=Acz+Bcγ(∆)[u−α(∆)]
h(x) =T1(x)
– p. 4/18

Insummary,then-dimensionalSIsystem
˙x=f(x)+g(x)u
istransformableintothecontrollerformifandonlyif∃h(x)
suchthat
˙x=f(x)+g(x)u, y=h(x)
hasrelativedegreen
Searchforasmoothfunctionh(x)suchthat
LgL
i−1
f
h(x) = 0, i= 1,2,...,n−1,andLgL
n−1
f
h(x)6= 0
T(x) =
h
h(x), Lfh(x),∆∆∆L
n−1
f
h(x)
i
– p. 5/18

TheLieBracket:
Fortwovectoreldsfandg,theLie
bracket[f,g]isathirdvectorelddenedby
[f,g](x) =
∂g
∂x
f(x)−
∂f
∂x
g(x)
Notation:
ad
0
f
g(x) =g(x), adfg(x) = [f,g](x)
ad
k
f
g(x) = [f,ad
k−1
f
g](x), k≥1
Properties:
[f,g] =−[g,f] Forconstantvectoreldsfandg,[f,g] = 0
– p. 6/18

Example
f=
"
x2
−sinx1−x2
#
, g=
"
0
x1
#
[f,g] =
"
0 0
1 0
# "
x2
−sinx1−x2
#

"
0 1
−cosx1−1
# "
0
x1
#
adfg= [f,g] =
"
−x1
x1+x2
#
– p. 7/18

f=
"
x2
−sinx1−x2
#
, adfg=
"
−x1
x1+x2
#
ad
2
f
g= [f,adfg] =
"
−1 0
1 1
# "
x2
−sinx1−x2
#

"
0 1
−cosx1−1
# "
−x1
x1+x2
#
=
"
−x1−2x2
x1+x2−sinx1−x1cosx1
#
– p. 8/18

Distribution:
Forvectoreldsf1,f2,...,fkonD⊂R
n
,let
∆(x) = span{f1(x),f2(x),...,fk(x)}
Thecollectionofallvectorspaces∆(x)forx∈Discalled
adistributionandreferredtoby
∆ = span{f1,f2,...,fk}
Ifdim(∆(x)) =kforallx∈D,wesaythat∆isa
nonsingulardistributiononD,generatedbyf1,...,fk
Adistribution∆is
involutive
if
g1∈∆ andg2∈∆⇒[g1,g2]∈∆
– p. 9/18

Lemma:
If∆isanonsingulardistribution,generatedby
f1,...,fk,thenitisinvolutiveifandonlyif
[fi,fj]∈∆,∀1≤i,j≤k
Example:
D=R
3
;∆ = span{f1,f2}
f1=



2x2
1
0


, f2=



1
0
x2


,dim(∆(x)) = 2,∀x∈D
[f1,f2] =
∂f2
∂x
f1−
∂f1
∂x
f2=



0
0
1



– p. 10/18

rank[f1(x),f2(x),[f1,f2](x)] =
rank



2x21 0
1 0 0
0x21


= 3,∀x∈D
∆isnotinvolutive
– p. 11/18

Example:
D={x∈R
3
|x
2
1
+x
2
3
6= 0};∆ = span{f1,f2}
f1=



2x3
−1
0


, f2=



−x1
−2x2
x3


,dim(∆(x)) = 2,∀x∈D
[f1,f2] =
∂f2
∂x
f1−
∂f1
∂x
f2=



−4x3
2
0



rank



2x3−x1−4x3
−1−2x22
0x30


= 2,∀x∈D
∆isinvolutive
– p. 12/18

Theorem:
Then-dimensionalSIsystem
˙x=f(x)+g(x)u
istransformableintothecontrollerform
ifandonlyif
thereis
adomainD0suchthat
rank[g(x),adfg(x),...,ad
n−1
f
g(x)] =n,∀x∈D0
and
span{g,adfg,...,ad
n−2
f
g}isinvolutiveinD0
– p. 13/18

Example
˙x=
"
asinx2
−x
2
1
#
+
"
0
1
#
u
adfg= [f,g] =−
∂f
∂x
g=
"
−acosx2
0
#
[g(x),adfg(x)] =
"
0−acosx2
1 0
#
rank[g(x),adfg(x)] = 2,∀xsuchthatcosx26= 0
span{g}isinvolutive
FindhsuchthatLgh(x) = 0,andLgLfh(x)6= 0
– p. 14/18

∂h ∂x
g=
∂h
∂x2
= 0⇒hisindependentofx2
Lfh(x) =
∂h
∂x1
asinx2
LgLfh(x) =
∂(Lfh)
∂x
g=
∂(Lfh)
∂x2
=
∂h
∂x1
acosx2
LgLfh(x)6= 0inD0={x∈R
2
|cosx26= 0}if
∂h
∂x1
6= 0
Takeh(x) =x1⇒T(x) =
"
h
Lfh
#
=
"
x1
asinx2
#
– p. 15/18

Example(Field-ControlledDCMotor)
˙x=



−ax1
−bx2+k−cx1x3
θx1x2


+



1
0
0


u
adfg=



a
cx3
−θx2


;ad
2
f
g=



a
2
(a+b)cx3
(b−a)θx2−θk



[g(x),adfg(x),ad
2
f
g(x)] =



1a a
2
0cx3(a+b)cx3
0−θx2(b−a)θx2−θk



– p. 16/18

det[∆] =cθ(−k+2bx2)x3
rank[∆] = 3forx26=k/2bandx36= 0
span{g,adfg}isinvolutiveif[g,adfg]∈span{g,adfg}
[g,adfg] =
∂(adfg)
∂x
g=



0 0 0
0 0c
0−θ0






1
0
0


=



0
0
0



⇒span{g,adfg}isinvolutive
D0={x∈R
3
|x2>
k
2b
andx3>0}
FindhsuchthatLgh(x) =LgLfh(x) = 0;LgL
2
f
h(x)6= 0
– p. 17/18

x

= [0,k/b,ω0]
T
, h(x

) = 0
∂h
∂x
g=
∂h
∂x1
= 0⇒hisindependentofx1
Lfh(x) =
∂h
∂x2
[−bx2+k−cx1x3]+
∂h
∂x3
θx1x2
[∂(Lfh)/∂x]g= 0⇒cx3
∂h
∂x2
=θx2
∂h
∂x3
h=c1[θx
2
2
+cx
2
3
]+c2, LgL
2
f
h(x) =−2c1cθ(k−2bx2)x3
h(x

) =c1[θ(k/b)
2
+cω
2
0
]+c2
c1= 1, c2=−θ(k/b)
2
−cω
2
0
– p. 18/18
Tags