Lecture 07+08_1st & 2nd Order Control Systems (1).pptx
FaheemAbbas82
11 views
16 slides
Jun 07, 2024
Slide 1 of 16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
About This Presentation
Control Engineering
Size: 729.19 KB
Language: en
Added: Jun 07, 2024
Slides: 16 pages
Slide Content
Control Engineering Lab Engr. Adnan Rasheed
A first-order system without zeros The Step Response of the above system will be,
2nd Order Control Systems
Damping Cases (2 nd Order) w.r.t Step Responses
MATLAB Control Functions step (num,den) : To plot the step response of the system impulse(num,den) : To plot the impulse response of the system. [y,x,t]=step(num,den): To store the values of the step response function in an array. ym=max(y): To get the maximum amplitude of a response value. ys = dcgain(num,den) : To get the d.c. gain of the system (steady state value) yovrsht = (ym-yt)/ys * 100; To calculate the % over shoot.
Example 5.2. 5.2 Closed-loop speed tachometer control system R(S) is the input voltage w(S) is the output angular movement of motor Td(S) is the external disturbance signal 5.2.1 Requirement: Analyze under external Disturbance Closed loop with feedback is better:
5.2.1 MATLAB Code for the Open-loop without tachometer feedback of the above example (Case-I) % ---------------------------------------------------------------------------MEEN-4263 Control Engineering Lab ------------------------------------------------------------- % Author : Engr. Adnan Rasheed % Date : xxxxxxxx % Lab No. : 5 % Class : BEMTS VI (A & B) % File name : opentach.m % Description : The function implements the speed tachometer example. %------------------------------------------------------------------------------------- % Define Tachometer control system parameters Ra = 1; Km = 10; J= 2; b = 0.5; Kb = 0.1; Ka = 54; Kt = 1; num1 = [1]; den1 = [J b]; % Define G(s)= 1 / Js+b num2 = [Km*Kb/Ra]; den2 = [1]; % Define H(s) = Km*Kb/Ra [num,den] = feedback(num1,den1,num2,den2); % Find the T(S)= w(s) / Td(s) num = -num % Change the sign of T(s) since Td(s) is negative printsys(num,den); % print the final T(S) [step_resp,x,t] = step(num,den); % Compute response to step disturbance figure plot(t,step_resp); % plot step response title('Open-loop Disturbance Step Response'); xlabel('time[sec]'); ylabel('speed'); grid; Final_val = step_resp(length(t)) % Find steady-state error, last value of output %------------------------------------------------------------------------------------- % End Function %-------------------------------------------------------------------------------------
5.2.3 MATLAB Code for the Open-loop without tachometer feedback of the above example (Case-I) The resulting system reduced to the following taking step Td(s): Figure 5.3 : Open-Loop system Disturbance Step Response The approximate steady state value is: w(7) = -0.66 rad/s at t = 7 sec