Lecture 1 - Drag & Terminal Velocity.pdf

salmanmohsin2011001 8 views 54 slides Mar 04, 2025
Slide 1
Slide 1 of 54
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54

About This Presentation

Hinmsmskksksksmsmmsmsksjsndnnznsnsnznznznz


Slide Content

ChE 3203/4221 Particle Technology
Forces on Submerged Particles
Drag & Terminal Velocity
1
Safat Anam
Lecturer
Dept. of ChE, RUET

Concept of:
Boundary layer growth and separation
Drag force on submerged particles
Total forces on submerged particles
Creeping flow around a spherical particles
Navier stokes equation
Terminal Velocity
2

Concept of Boundary Layer Growth and Separation
Ref: Foust, Chapter-13
3

4
Theboundarylayerseparatesfromtheobstacle'ssurfacetoformavortex-filled
wake.Thisphenomenonisknownasboundarylayerseparation.
Outsidetheboundarylayer,andthewake,theflowpatternisirrotationaland
essentiallyinviscid.

In the Laminar regime:
B.L Thickness:
Point stress:
Mean stress:
In the turbulent regime:
B.L Thickness:
Point stress:
Mean stress:
5

Nomenclature:
6

Transition point:
Themeanstressforthe
laminarportionoftheB.L
thatliesbetweeny=0
toy=y
c:
Average stress
over the plate:
7

Types of drag
Aforceisexertedonthesolidbythefluidwhilemovingthroughit.Thisforceisa
combinationof-1.BLdrag(orskindragorskinfriction)and2.Formdrag.
[Significantfrictional
lossoccurbecauseof
accelerationand
decelerationwhenthe
fluidchangespathto
passaroundasolid
bodysetintheflow
path.]
8

(Boundary layer
growth begins at
the stagnation
point and
continues over the
entire surface)
(Attheexactcenter
ofthebodythefluid
willhavezero
velocity.Thisis
knownasstagnation
point)
(The tangential
stress on the body
arising from
transfer of
momentum
originating in the
slowing down of
the boundary
layer is the skin
friction)
(ThefluidoutsidetheB.Lis
subjectedtoaccelerationdue
inparttochangeinpath.As
thefluidisdivertedinpath
topassaroundthebody,a
forceisexerteduponthe
bodybythefluid)
9

Skinfrictionorskindrag:Thetangential
stressonthebodyarisingfromtransferof
momentumoriginatingintheslowing
downoftheboundarylayeristheskin
friction.
FormdragorPressuredrag:The
summationofallforcesonthebodydue
toaccelerationanddeceleration
constitutestheformdragofthebody.
Formdragarisesfromthepressurefield
aroundthebodycausedbythebodyshape
andthedisplacementeffectofthe
boundarylayeraswellasseparationof
theflowfromthatbodyshapebecauseof
viscouseffects.
10

Skin drag and Form drag
Thetransferofmomentumresultedinatangentialstressordragona
smoothsurfacethatwasorientedparalleltotheflowdirection.This
phenomenonistraditionallycalledskinfrictionorskindrag.
Ifanysurfaceisincontactwithafluidandarelativemotionexists
betweenthefluidandthesurface,skinfrictionwillexistbetweenthesurface
andthefluid.
Inadditiontoskinfriction,significantfrictionallossesoccurbecauseof
accelerationanddecelerationofthefluid.Theaccelerativeeffectsoccur
whenthefluidchangespathtopassaroundasolidbodysetintheflowpath.
Thisphenomenoniscalledformdrag.
11

Ref: Fluid Mechanics R.K
Bansal, Chapter-14
12

13

14

15

16

17

The drag co efficient ( C
D) is defined as:
Correlationsareusuallypresentedgraphicallyonlogarithmicplotsof
C
DasafunctionofN
Re
18

(C
Dvs.N
Replotfor
particlesofdifferent
shapes)
AboveN
Re=10
5
theboundarylayerisconsideredturbulentforallshapesandtheaccelerative
effectspredominate.Itisinthisregionthatthedragdiagramcanberepresentedby:C
D=const
Ref: Foust, Chapter-13
19

20

21
What is it mean?

22

23

24

25

26

27

28

ConsidertheflowofanincompressiblefluidaboutasolidsphereofradiusRand
diameterD.Thefluid,withdensityρandviscosityμ,approachesthefixedsphere
verticallyupwardinthezdirectionwithauniformvelocityv
ꭃ,.Forthisproblem,
"creepingflow"meansthattheReynoldsnumberRe=Dvρ/μislessthanabout0.1.
Thisflowregimeischaracterizedbytheabsenceofeddyformationdownstream
fromthesphere.
29
Transport Phenomena –
Bird & Stewart, 2
nd
ed
(Chapter 2, Section 2.6)
Read & Understand the
complete derivation

30

31

Normal force:
Tangential force:
Total forces on the spherical particle:
32

33
Solvethisgivensetofequationstoobtainthetotalforceonasphericalparticles
subjectedtocreepingflow

34

35
Navier Stokes Equation:

36

37
Terminal Velocity of Particles
Ref: Foust, Chapter-22

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54
Foust Exercise Problem: 22.1, 22.3, 22.4, 22.5, 22.6
Tags