Lecture-1-Principle-and-Application-of-X-Ray-Diffractometer.pdf

jaydipparmar5940 40 views 39 slides Aug 04, 2024
Slide 1
Slide 1 of 39
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39

About This Presentation

This is about information of x ray diffraction


Slide Content

Pre -Ph.D. Course Work 2021
Department of Physics
Topic: Experimental Tools and Techniques
Lecture1:PrincipleandApplicationsofPowderX-RayDiffractometer
Lecture by: Dr.AnjuDixit
ChhatrapatiShahuJiMaharajUniversity
(Formerly Kanpur University)

Outlines
1.Introduction to X-Rays
2.Principle of X-Ray Diffraction
3.Bragg’s Law
4.X-ray Diffractometer
5.Types of X-Ray radiation
6.X-Ray Diffraction Methods
7.Applications of Powder X-Ray Diffraction

Experimental tools and Techniques
S.No.Titleof the Lecture Lecture No.
1 Principle and Application of Powder X-Ray
Diffractometer
Lecture 1
2 SEM and Energy Dispersive X-Ray Analysis Lecture 2
3 TEM Lecture 3
4 AFM and STM Lecture 4
5 Spectrometer ( IR and UV Visible)
FT-IRSpectrometer
Lecture 5

Introduction
1.X-rayswerediscoveredin1895bytheGermanphysicist
WilhelmConradRöntgen.
2.Electromagneticradiationdescribedashavingpacketsof
energy,orphotons.Theenergyofthephotonisrelatedtoits
frequencybythefollowingformula:E=hν(E=hc/λ)
3.Electromagneticradiationcanbeexpressedintermsofenergy,
wavelength,orfrequency.

Type of Radiation Frequency Range (Hz) Wavelength Range
gamma-rays 10
20
–10
24
< 10
-12
m
x-rays 10
17
–10
20
1 nm –1 pm
ultraviolet 10
15
–10
17
400 nm –1 nm
visible 4 –7.5*10
14
750 nm –400 nm
near-infrared 1*10
14
–4*10
14
2.5 μm –750 nm
infrared 10
13
–10
14
25 μm –2.5 μm
microwaves 3*10
11
–10
13
1 mm –25 μm
radio waves < 3*10
11
> 1 mm
Theentirerange(electromagneticspectrum)isgivenbyradiowaves,
microwaves,infraredradiation,visiblelight,ultra-violetradiation,X-rays,
gammaraysintheincreasingorderoffrequencyanddecreasingorderof
wavelength.Thetypeofradiationandtheirfrequencyandwavelengthranges
areasfollows:

X-Ray Diffraction
X-raysareelectromagneticradiationwithwavelengthsbetween1
pmto1nm.ThewavelengthofX-raysisonanatomiclevelandis
muchsmallerthanthatofvisiblelight(400nmto750nm).
SinceX-rayshaveasmallerwavelengththanvisiblelight,they
havehigherenergyandaremorepenetrative.Itsabilityto
penetratematter,however,isdependentondensityofthematter.
Therefore,X-raysareusefulinexploringstructuresofatoms.
X-RayCrystallographyisatechniqueusedforidentifyingthe
atomicandmolecularstructureofacrystal,inwhichthe
crystallineatomscauseabeamofincidentX-raystodiffractinto
manyspecificdirections.Thisformsapattern,thistypeofpattern
iscalledtheX-raydiffractionpattern

Interference
X-raydiffraction,aphenomenoninwhichtheatomsofacrystal,byvirtueof
theiruniformspacing,causeaninterferencepatternofthewavespresentinan
incidentbeamofXrays.TheatomicplanesofthecrystalactontheXraysin
exactlythesamemannerasdoesauniformlyruledgratingonabeamoflight.
BecauseX-raysarebundlesofseparatewaves,eachwavecaninteractwithon
anothereitherconstructivelyordestructively.Theinteractionbetweenwavesis
calledinterference.Ifwavesareinphasemeaningthateachoftheircrestsand
troughsoccurexactlyatthesametime,thenthewaveswillstacktogetherto
producearesultantwavethathasahigheramplitudeandresultsinthe
constructiveinterference.
Iftheywavesareoutofphase,thendestructiveinterferenceoccursandthe
amplitudeoftheresultantwavewillbereduced. Ifwavesareexactlyoutof
phasebyamultipleofn/(2*lambda)thentherewillbecompletedestructive
interferenceandtheresultantwavehasnoamplitude,meaningthatitis
completeddestroyed.

Principle of X-Ray Diffraction
TheatomicplanesofacrystalcauseanincidentbeamofX-rays
tointerferewithoneanotherastheyleavethecrystal.The
phenomenoniscalledX-raydiffraction. AndscatteringofX-
raysbytheatomsofacrystalthatproducesaninterference
effectsothatthediffractionpatterngivesinformationonthe
structureofthecrystalortheidentityofacrystallinesubstance.
SoX-raydiffractionisbasedonconstructiveinterferenceof
monochromaticx-raysandacrystallinesample.OrX-rays
arerelativelyshort-wavelengthEMradiationandcanexhibit
wavecharacteristicssuchasinterferencewheninteracting
withcorrespondinglysmallobjects.

Bragg’s Law
Bragg'slawisaspecialcaseofdiffraction,whichdetermines
theanglesofcoherentandincoherentscatteringfromacrystal
lattice.WhenX-raysareincidentonaparticularatom,they
makeanelectroniccloudmovelikeanelectromagneticwave.
WhentheX-rayisincidentontoacrystalsurface,itsangleof
incidence,θ,willreflectwiththesameangleofscattering,θ.
And,whenthepathdifference,disequaltoawholenumber,
n,ofwavelength,constructiveinterferencewilloccur.

Bragg'sLawcaneasilybederivedbyconsideringtheconditions
necessarytomakethephasesofthebeamscoincidewhenthe
incidentangleequalstoreflectingangle.
Theraysoftheincidentbeamarealwaysinphaseandparallelupto
thepointatwhichthetopbeamstrikesthetoplayeratatomz.
Thesecondbeamcontinuestothenextlayerwhereitisscattered
byatomB.Thesecondbeammusttraveltheextradistance
AB+BCifthetwobeamsaretocontinuetravelingadjacentand
parallel.
Thisextradistancemustbeanintegral(n)multipleofthe
wavelength()forthephasesofthetwobeamstobethesame:
nλ=AB+BC----------------------------------------------(1)

Recognizingdasthehypotenuseofthe
righttriangleABZ,wecanuse
trigonometrytorelatedandtothe
distance(AB+BC).
The distance AB is opposite θSo,
AB = d sin θ----------------------------( 2)
Because AB = BC eq. (1) becomes,
nλ=2AB----------------------------( 3)
Substituting eq. (2) in eq. (3) we have,
nλ=2dsinθ------------------------(4)
SotheprincipleisthatwhenabeamofX-raysofwavelengthλentersacrystal,the
maximumintensityofthereflectedrayoccurswhensinθ=nλ/2d,whereθisthe
complementoftheangleofincidence,nisawholenumber,anddisthedistancebetween
layersofatoms.

X-ray Diffractometer

Working of X-ray Diffractometer
X-raydiffractometersconsistofthreebasicelements:anX-raytube,a
sampleholder,andanX-raydetector.X-Raysaregeneratedinacathode
raytubebyheatingafilamenttoproduceelectrons,acceleratingthe
electronstowardatarget(tungsten)byapplyingavoltage,and
bombardingthetargetmaterialwithelectrons.
Whenelectronshavesufficientenergytodislodgeinnershellelectrons
ofthetargetmaterial,characteristicX-rayspectraareproduced.
Thesespectraconsistofseveralcomponents,themostcommonbeing
K
α
andK
β
.K
α
consists,inpart,ofK
α1
andK
α2
.K
α1
hasaslightlyshorter
wavelengthandtwicetheintensityasK
α2
.Thespecificwavelengthsare
characteristicofthetargetmaterial(Cu,Fe,Mo,Cr).

Filtering,byfoilsorcrystalmonochrometers,isrequiredtoproducemonochromaticX-
raysneededfordiffraction. K
α1
andK
α2
aresufficientlycloseinwavelengthsuchthata
weightedaverageofthetwoisused.
Copperisthemostcommontargetmaterialforsingle-crystal diffraction,withCuK
α
radiation=1.5418Å .TheseX-raysarecollimatedanddirectedontothesample. Asthe
sampleanddetectorarerotated,theintensityofthereflectedX-raysisrecorded.
WhenthegeometryoftheincidentX-raysimpingingthesamplesatisfiestheBragg
Equation,constructiveinterferenceoccursandapeakinintensityoccurs.Adetector
recordsandprocessesthisX-raysignalandconvertsthesignaltoacountratewhichis
thenoutputtoadevicesuchasaprinterorcomputermonitor.
ThedominanteffectthatoccurswhenanincidentbeamofmonochromaticX-rays
interactswithatargetmaterialisscatteringofthoseX-raysfromatomswithinthe
targetmaterial.
Inmaterialswithregularstructure(i.e.crystalline),thescatteredX-raysundergo
constructiveanddestructiveinterference.Thisistheprocessofdiffraction. The
diffractionofX-raysbycrystalsisdescribedbyBragg’sLaw,
nλ=2dsinθ.

Thedirectionsofpossiblediffractionsdependonthesizeandshapeofthe
unitcellofthematerial.Theintensitiesofthediffractedwavesdependon
thekindandarrangementofatomsinthecrystalstructure.
However,mostmaterialsarenotsinglecrystals,butarecomposedofmany
tinycrystallitesinallpossibleorientationscalledapolycrystalline
aggregateorpowder.
WhenapowderwithrandomlyorientedcrystallitesisplacedinanX-ray
beam,thebeamwillseeallpossibleinteratomicplanes.Iftheexperimental
angleissystematicallychanged,allpossiblediffractionpeaksfromthe
powderwillbedetected.
X-raysaregeneratedviainteractionsoftheacceleratedelectronswith
electronsoftungstennucleiwithinthetubeanode.Therearetwotypesof
X-raygenerated:characteristicradiationandbremsstrahlungradiation.
Electronstravelingfromthefilament(cathode)tothetarget(anode)
convertasmallpercentage(1%)oftheirkineticenergyintox-rayphotons
bytheformationofbremsstrahlungandcharacteristicradiation.

BREMSSTRAHLUNG RADIATION
Bremsstrahlunginteractions,theprimarysourceofx-rayphotonsfromanx-ray
tube,areproducedbythesuddenstopping,breakingorslowingofhigh-speed
electronsatthetarget.Whentheelectronsfromthefilamentstrikethetungsten
target,x-rayphotonsarecreatediftheyeitherhitatargetnucleusdirectly(rare)
ortheirpathtakesthemclosetothenucleus.
Ifahighspeedelectronhitsthenucleusofatargetatom,allitskineticenergyis
transformedintoasinglex-rayphoton.(Totalabsorptionhasoccurred).Thus,
theenergyoftheresultantphoton(keV)isnumericallyequaltotheenergyof
theelectron.Thisinturnisequaltothekilovoltageappliedacrossthex-ray
tubeattheinstantofitspassage.

CHARACTERISTIC RADIATION
Characteristicradiationoccurswhenanelectronfromthefilamentdisplaces
anelectronfromaninner-shellofthetungstentargetatom,therebyionizing
theatom.
Whenthishappens,anotherelectroninanouter-shellofthetungstenatomis
quicklyattractedintothevoidinthedeficientinner-shell.
Whenthedisplacedelectronisreplacedbytheouter-shellelectron,aphoton
isemittedwithanenergyequivalenttothedifferenceinthetwoorbital
bindingenergies.

X-Ray Diffraction Methods
Therearethreediffractionmethodsbywhichwecanobtainthe
informationaboutcrystalstructures:

LaueDiffractionmethod
RotatingcrystalDiffractionmethod
PowderDiffractionmethod

Laue Diffraction method
TheLauemethodisasinglecrystaldiffractionmethod.The
discoveryofthephenomenonofcrystaldiffractionwasobtained
forthefirsttimebytheLauemethod.
Themethodrequiresapolychromaticbeam,i.e.thefullspectrum
ofx-raywavelengths.Thesinglecrystalplacedinthe
polychromaticbeamdiffractsinmanydifferentdirections.
TheresultingLauediffractionpatterndependsontheorientation
ofthecrystal.ThustheLauemethodisidealtodetectthe
orientationofasinglecrystal,i.e.tofindthedirectionsofthe
translationvectorsoftheunitcell.

Laue Diffraction method

Laue Diffraction method
Asinglecrystalismountedonarotatingtablewhichenablesthecrystaltobe
rotatedthroughcertainknownanglesandmaintainedstationarywithrespect
toabeamofX-raysofdifferentwavelengths.
Thecrystalselectsoutanddiffractsthosediscretevaluesofλ,forwhich
crystalplanesexist,ofspacingdandglancingangleθsatisfyingBragg’s
equation:
nλ=2dsin(θ)
Anarrow,parallelbeamiscollimatedonthecrystal.Photographicfilmsare
placedeithertoreceivethetransmittedorreflectedbeams.
Theresultantpatternconsistsofaseriesofsharpwelldefinedspots.Theseare
indicativeofaperfectcrystalstructure,whereasbroken,extendedspots
indicatelatticedistortionandimperfectionsinthecrystal.

Laue Diffraction method
Singlecrystalplacedonathree-axisgoniometerinfrontof
narrowbeamofx-rays
X-raysarenotmonochromatic
2θanddremainfixedforeachsetofplanes(onlyλisvaried)
EachsetdiffractsthatparticularλwhichsatisfiestheBragg
equationforit
Eachdiffractedbeamhasadifferentλ
Incidentbeampassesthroughphotographicfilm,hitsthe
crystal,andisback-reflectedtowardsthefilm

Rotating crystal Diffraction method
Intherotatingcrystalmethod,asinglecrystalismountedwithanaxis
normaltoamonochromaticx-raybeam.
Acylindricalfilmisplacedarounditandthecrystalisrotatedaboutthe
chosenaxis.Asthecrystalrotates,setsoflatticeplaneswillatsomepoint
makethecorrectBraggangleforthemonochromaticincidentbeam,andat
thatpointadiffractedbeamwillbeformed.
Latticeconstantofthecrystalcanbedeterminedbymeansofthismethod;
foragivenwavelengthiftheangleθatwhichareflectionoccursdhkl
known,iscanbedetermined.
Thereflectedbeamsarelocatedonthesurfaceofimaginarycones.By
recordingthediffractionpatterns(bothanglesandintensities)forvarious
crystalorientations; onecandeterminetheshapeandsizeofunitcellaswell
asarrangementofatomsinsidethecell.

Powder Diffraction method
ItisascientifictechniqueusingX-Ray,neutron,orelectrondiffractionon
powderormicrocrystallinesamplesforstructuralcharacterizationofmaterials.An
instrumentdedicatedtoperformingsuchpowdermeasurementsiscalledapowder
diffractometer.
Powderdiffractionstandsincontrasttosinglecrystaldiffractiontechniques,whichwork
bestwithasingle,well-orderedcrystal.Ifapowderedspecimenisused,insteadofasingle
crystal,thenthereisnoneedtorotatethespecimen,becausetherewillalwaysbesome
crystalsatanorientationforwhichdiffractionispermitted. HereamonochromaticX-ray
beamisincidentonapowderedorpolycrystallinesample. Thismethodisusefulforsamples
thataredifficulttoobtaininsinglecrystal.

Thepowdermethodisusedtodeterminethevalueofthelatticeparametersaccurately.
Latticeparametersarethemagnitudesoftheunitvectorsa,bandcwhichdefinetheunitcell
forthecrystal.Foreverysetofcrystalplanes,bychance,oneormorecrystalswillbeinthe
correctorientationtogivethecorrectBraggangletosatisfyBragg'sequation. Everycrystal
planeisthuscapableofdiffraction. Eachdiffractionlineismadeupofalargenumberof
smallspots,eachfromaseparatecrystal

Powder Diffraction method
Adiffractometerproduceswavesataknownfrequency,whichis
determinedbytheirsource.Thesourceisoftenx-rays,becausetheyare
theonlykindofenergywiththecorrectfrequencyforinter-atomic-
scalediffraction.However,electronsandneutronsarealsocommon
sources,withtheirfrequencydeterminedbytheirdeBroglie
wavelength.
Whenthesewavesreachthesample,theatomsofthesampleactjust
likeadiffractiongrating,producingbrightspotsatparticularangles.
Bymeasuringtheanglewherethesebrightspotsoccur,thespacingof
thediffractiongratingcanbedeterminedbyBragg'slawBecausethe
sampleitselfisthediffractiongrating,thisspacingistheatomic
spacing.

Powder Diffraction method
Thedistinctionbetweenpowderandsinglecrystaldiffractionisthe
degreeoftexturinginthesample.Singlecrystalshavemaximal
texturing,andaresaidtobeanisotropic
Incontrast,inpowderdiffraction,everypossiblecrystallineorientation
isrepresentedequallyinapowderedsample,theisotropiccase.PXRD
operatesundertheassumptionthatthesampleisrandomlyarranged.
Therefore,astatisticallysignificantnumberofeachplaneofthecrystal
structurewillbeintheproperorientationtodiffracttheX-rays.
Therefore,eachplanewillberepresentedinthesignal.Inpractice,itis
sometimesnecessarytorotatethesampleorientationtoeliminatethe
effectsoftexturingandachievetruerandomness.

Lauemethod RotatingcrystalmethodPowdermethod
Orientation
Singlecrystal
Latticeconstant
Singlecrystal
Latticeparameter
Polycrystal
Polychromaticbeam
Fixedangle
Monochromaticbeam
Variableangle
Monochromatic
beam
Variableangle

Applications of PXRD
Diffractionoccurswhenlightisscatteredbyaperiodicarraywithlong-
rangeorder,producingconstructiveinterferenceatspecificangles.
Theatomsinacrystalareperiodicallyarrangedthusdiffractlight. The
wavelengthofX-rayaresimilartothedistancebetweenatoms,PowderX-
rayDiffraction(PXRD)techniquesusesthisprincipletoelucidatethe
crystallinenatureofmaterials.
ThescatteringofX-raysfromatomsproduceadiffractionpatternthat
containsinformationabouttheatomicarrangementincrystal.
Amorphousmaterialslikeglassdonothaveperiodicarraywithlong-range
orderso;theydonotproduceanysignificantpeakindiffractionpattern

Crystal structure and Lattice parameters
using PXRD
X-raydiffractionprovidesampleinformationaboutthelattice
parameters.Thepositionofadiffractionpeakisdeterminedbythesize
andshapeofunitcellofthecrystallinephase.Peakrepresentsalattice
planeandthereforecanbecharacterizedbyMillerindex.
Ifthesymmetryishighasincaseofcubicorhexagonal,itisnot
difficulttoidentifythepeakindexforanunknownphase.Thisisvery
usefulinsolid-statechemistrytoidentifyingnewmaterials.Oncea
patterngetsindexed,itservesasreferencefornewentitie

XRD Graph

Polymorph study
PXRDishelpfulinidentificationandcharacterizationofpolymorph
(Polymorphismdescribestheexistenceofasolidmaterialinmorethanone
formorcrystalstructure).,monitoringthestability,methoddevelopmentand
validationforidentificationandquantificationofdrugsinPharmaceutical
Industries.
ThepartoftheX-raythatisnotscatteredsimplypassesthroughthenext
layerofatoms,whereagainpartoftheX-rayisscatteredandpartofit
passesthroughtothenextlayer.Thiscausesanoveralldiffractionpattern,
similartohowagratingdiffractsabeamoflight.InorderforanX-rayto
diffract,thesamplemustbecrystallineandthespacingbetweenatom
layersmustbeclosetotheradiationwavelength.

Polymorph study
Ifbeamsdiffractedbytwodifferentlayersareinphase,
constructiveinterferenceoccursandthediffractionpattern
showsapeak.However,iftheyareoutofphase,destructive
interferenceoccursappearandnopeakisobserved. Diffraction
peaksonlyoccurifitfollowsBragg’sLaw.
Since,ahighlyregularstructureisneededfordiffractionto
occur,onlycrystallinesolidsdiffract,thePXRDofamorphous
materialsdonotdepictanysignificantpeakindiffraction
pattern

Crystallinitystudy by PXRD
TheXRDanalysisofcrystallinecompoundsgivesadiffraction
patternconsistingofawell-defined,narrow,sharpand
significantpeakwhileamorphousmaterialsdonotgiveclear
peaksratherthepatternhasnoisesignals,smearedpeakoritcan
havesomeshortorderbumps.
Manypolymersdepictsemi-crystallinebehaviorandproduce
halopattern. PowderXRDcanbeusedtodetermine
thecrystallinityybycomparingtheintegratedintensityofthe
backgroundpatterntothatofthesharppeaks.

Particle Size and Crystallite Size
Thetermparticlesizeandcrystallitesizerefertotwodistinct
propertiesinamaterial.Particlescompriseofseveral
smallcrystallite.
Crystallitesizeisthefundamentalpropertyofmaterials.
Propertiesofnanomaterialsdependoncrystalssizeandnot
particlesize.
PXRDcanmeasuremillionsofcrystalsandaccurately
determinethesizedistributionofnanomaterials.

Phase Transition
SomecrystalsexhibitsseveralphasetransitionssuchasBaTiO
3.
Withtemperaturevariationthesedifferentphasesoccurs.Atthis
pointnewdiffractionpeakswillappearoroldonesdisappear
accordingtothesymmetryofthenewphase.
Thesephaseshavedifferentsymmetry.Sodiiferentphaseswith
correspondtodifferentcrystalstructurecanbeidentified. Insuch
casesthesymmetrymaychangebecausetheexistingstructureis
distortedratherthanreplacedbyacompletelydifferentone.

Summary
X-RayDiffractionisatechniqueusedforidentifyingtheatomicand
molecularstructureofacrystal,inwhichthecrystallineatomscause
abeamofincidentX-raystodiffractintomanyspecificdirections.This
formsapattern,thistypeofpatterniscalledtheX-raydiffractionpattern
WhentheX-rayisincidentontoacrystalsurface,itsangleofincidence,θ,
willreflectwiththesameangleofscattering,θ.And,whenthepath
difference,disequaltoawholenumber,n,ofwavelength,constructive
interferencewilloccur.
X-RaydiffractionmethodsalongwithSeveralApplicationsofPowderX-
RayDiffractionwereexplored.

References
1.ReviewArticle:PowderXRDTechniqueanditsApplicationsin
ScienceandTechnology,AshishChauhanandPriyanka
Chauhan,JournalofAnalytical&BioanalyticalTechniques,5,
2014.DOI:10.4172/ 2155-9872.1000212
2.ElementsofX-RayDiffraction,SecondEditionbyB.D.
Cullity.